On the basis of Gram-negative bacterium Escherichia coli models previously published in the literature, the transmembrane voltage induced by the application of an alternating current (AC) electric field on a bacterial suspension is calculated using COMSOL Multiphysics software, in the range 1-20 MHz, for longitudinal and transverse field orientations. The voltages developed on each of the three layers of the cell wall are then calculated using an electrical equivalent circuit. This study shows that the overall voltage on the cell wall, whose order of magnitude is a few tens of µV, is mainly distributed on inner and outer layers, while a near-zero voltage is found on the periplasm, due to its much higher electrical conductivity compared with the other layers. Although the outer membrane electrical conductivity taken in the model is a thousand times higher than that of the inner membrane, the voltage there is about half of that on the inner membrane, due to capacitive effects. It follows that the expression of protein complexes anchored in the inner membrane could potentially be disrupted, inducing in particular a possible perturbation of biological processes related to cellular respiration and proton cycle, and leading to growth inhibition as a consequence. Protein complexes anchored in the outer membrane or constituting a bridge between the three layers of the cell wall, such as some porins, may also undergo the same action, which would add another growth inhibition factor, as a result of deficiency in porin filtration function when the external environment contains biocides. Bioelectromagnetics. 2020;41:279-288.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.