A plethora of demanding services and use cases mandate a revolutionary shift in the management of future wireless network resources. Indeed, when tight quality of service demands of applications are combined with increased complexity of the network, legacy network management routines will become unfeasible in 6G. Artificial Intelligence (AI) is emerging as a fundamental enabler to orchestrate the network resources from bottom to top. AI-enabled radio access and AI-enabled core will open up new opportunities for automated configuration of 6G. On the other hand, there are many challenges in AI-enabled networks that need to be addressed. Long convergence time, memory complexity, and complex behaviour of machine learning algorithms under uncertainty as well as highly dynamic channel, traffic and mobility conditions of the network contribute to the challenges. In this paper, we survey the state-of-art research in utilizing machine learning techniques in improving the performance of wireless networks. In addition, we identify challenges and open issues to provide a roadmap for the researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.