The potassium ion (K+) is vital for plant growth and development, and K+-deprivation leads to reduced crop yields. Here we describe phenotypic, transcriptomic, and mutant analyses to investigate the signaling mechanisms mediating root architectural changes in Arabidopsis (Arabidopsis thaliana) Columbia. We showed effects on root architecture are mediated through a reduction in cell division in the lateral root (LR) meristems, the rate of LR initiation is reduced but LR density is unaffected, and primary root growth is reduced only slightly. This was primarily regulated through gibberellic acid (GA) signaling, which leads to the accumulation of growth-inhibitory DELLA proteins. The short LR phenotype was rescued by exogenous application of GA but not of auxin or by the inhibition of ethylene signaling. RNA-seq analysis showed upregulation by K+-deprivation of the transcription factors JUNGBRUNNEN1 (JUB1) and the C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor 1 regulon, which are known to regulate GA signaling and levels that regulate DELLAs. Transgenic overexpression of JUB1 and CBF1 enhanced responses to K+ stress. Attenuation of the reduced LR growth response occurred in mutants of the CBF1 target gene SFR6, implicating a role for JUB1, CBF1, and SFR6 in the regulation of LR growth in response to K+-deprivation via DELLAs. We propose this represents a mechanism to limit horizontal root growth in conditions where K+ is available deeper in the soil.
Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of transcriptional control is RNA alternative splicing. However the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF)/DEFECTIVELY ORGANIZED TRIBUTARIES (DOT2) gene of Arabidopsis encodes a SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human SART1 and yeast snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and repress stress response and cell differentiation pathways.
Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF)/DEFECTIVELY ORGANIZED TRIBUTARIES (DOT2) gene of Arabidopsis encodes a SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human hSART1 and yeast Snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and repress stress response, cell differentiation and cell death pathways.
The GAI‐RGA ‐ and ‐SCR (GRAS) proteins belong to the plant-specific transcription factor gene family and involved in several developmental processes, phytohormone and phytochrome signaling, symbiosis, stress responses etc. GRAS proteins have a conserved GRAS domain at C-terminal and hypervariable N-terminal. The C-terminal conserved domain directly affects the function of the GRAS proteins. For instance, in Arabidopsis, mutations in this domain in Slender rice 1 (SLR1) and Repressor of GA (RGA) proteins cause significant phenotypic changes. GRAS proteins have been reported in more than 30 plant species and till now it has been divided into 17 subfamilies. This review highlighted GRAS protein's importance during several biological processes in plants, structural features of GRAS proteins, their expansion and diversification in the plants, GRAS-interacting proteins complexes and their role in biological processes. We also summarized available recent research that utilized CRISPR-Cas9 technology to manipulate GRAS genes in a plant for different traits. Further, the exploitation of GRAS genes in crop improvement programs has also been discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.