Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS). Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.
Objective To test the effectiveness of a high-dose home exercise/telerehabilitation program for manual wheelchair users who have a spinal cord injury (SCI) and determine whether the intervention would reduce pain and increase function, as we hypothesized. Design A pre-post trial with outcomes measured at 3 time points: baseline, postintervention (12wk), and follow-up (24+ weeks). Setting Subjects performed an exercise program at their homes using telerehabilitation for therapist monitoring of technique and exercise advancement. Baseline and postintervention data were collected at a motion analysis laboratory in a tertiary medical center. Participants A convenience sample of manual wheelchair users (N = 16, 3 women; average age, 41y; average time in a wheelchair, 16y) with shoulder pain (average pain duration, 9y) and mechanical impingement signs on physical examination. Interventions A 12-week home exercise program of rotator cuff and scapular stabilization exercises was given to each participant. The program included a high dose of 3 sets of 30 repetitions, 3 times weekly, and regular physical therapist supervision via videoconferencing. Main Outcome Measures Primary outcomes of pain and function were measured with the Wheelchair User's Shoulder Pain Index (WUSPI), Disabilities of Arm, Shoulder, and Hand (DASH) Index, and Shoulder Rating Questionnaire (SRQ). Secondary outcomes of strength were measured with isometric strength tests of scapulothoracic and glenohumeral muscles, and a static fatigue test of the lower trapezius. Results Pain was reduced and function improved after the intervention. There was a significant main effect for pain and function between the 3 time points based on the Friedman signed-ranked test, WUSPI (χ22 = 5.10, P = .014), DASH Index (χ22 = 5.41, P = .012), and SRQ (χ22 = 23.71, P ≤.001). Wilcoxon signed-rank tests demonstrated that isometric strength measurements of the serratus anterior and scapular retractors increased after the exercise intervention ([t = 2.42, P = .04] and [t = 4.67, P = .003], respectively). Muscle impulse produced by the lower trapezius during a fatigue task also improved (t = 2.2, P = .02). No differences were measured in isometric strength for the lower trapezius, glenohumeral rotators, and abductors between the baseline and 12-week time points. Conclusions A high-dose scapular stabilizer and rotator cuff strengthening program using telerehabilitation for supervision holds promise for shoulder pain treatment in manual wheelchair users with SCI. Additional work is needed to determine the effectiveness compared with other interventions, as well as the potential for earlier intervention to prevent development of shoulder pain.
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI.
Shoulder pain and pathology are common in manual wheelchair (MWC) users with paraplegia, and the biomechanical mechanism of injury is largely unknown. Establishing patterns of MRI characteristics in MWC users would help advance understanding of the mechanical etiology of rotator cuff disease, thus improving the logic for prescribed interventions. The purpose of this study was to report detailed shoulder MRI findings in a sample of 10 MWC users with anterolateral shoulder pain. The imaging assessments were performed using our standardized MRI Assessment of the Shoulder (MAS) guide. The tendon most commonly torn was the supraspinatus at the insertion site in the anterior portion in either the intrasubstance or articular region. Additionally, widespread tendinopathy, CA ligament thickening, subacromial bursitis, labral tears, and AC joint degenerative arthrosis and edema were common. Further reporting of detailed shoulder imaging findings is needed to confirm patterns of tears in MWC users regarding probable tendon tear zone, region, and portion. This investigation was a small sample observational study and did not yield data that can define patterns of pathology. However, synthesis of detailed findings from multiple studies could define patterns of pathological MRI findings allowing for associations of imaging findings to risk factors including specific activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.