Silver nanoparticles (AgNPs) have found a variety of uses including biomedical materials; however, studies of the cytotoxicity of AgNPs by size effects are only in the beginning stage. In this study, we examined the size-dependent cellular toxicity of AgNPs using three different characteristic sizes (∼ 10, 50, and 100 nm) against several cell lines including MC3T3-E1 and PC12. The cytotoxic effect determined based on the cell viability, intracellular reactive oxygen species generation, lactate dehydrogenase release, ultrastructural changes in cell morphology, and upregulation of stress-related genes (ho-1 and MMP-3) was fairly size- and dose-dependent. In particular, AgNPs stimulated apoptosis in the MC3T3-E1 cells, but induced necrotic cell death in the PC12 cells. Furthermore, the smallest sized AgNPs (10 nm size) had a greater ability to induce apoptosis in the MC3T3-E1 cells than the other sized AgNPs (50 and 100 nm). These data suggest that the AgNPs-induced cytotoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticles for biomedical uses.
Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml(-1). Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.
Three-dimensional matrices that encapsulate and deliver stem cells with defect-tuned formulations are promising for bone tissue engineering. In this study, we designed a novel stem cell delivery system composed of collagen and alginate as the core and shell, respectively. Mesenchymal stem cells (MSCs) were loaded into the collagen solution and then deposited directly into a fibrous structure while simultaneously sheathing with alginate using a newly designed core-shell nozzle. Alginate encapsulation was achieved by the crosslinking within an adjusted calcium-containing solution that effectively preserved the continuous fibrous structure of the inner cell-collagen part. The constructed hydrogel carriers showed a continuous fiber with a diameter of *700-1000 mm for the core and 200-500 mm for the shell area, which was largely dependent on the alginate concentration (2%-5%) as well as the injection rate (20-80 mL/h). The water uptake capacity of the core-shell carriers was as high as 98%, which could act as a pore channel to supply nutrients and oxygen to the cells. Degradation of the scaffolds showed a weight loss of *22% at 7 days and *43% at 14 days, suggesting a possible role as a degradable tissue-engineered construct. The MSCs encapsulated within the collagen core showed excellent viability, exhibiting significant cellular proliferation up to 21 days with levels comparable to those observed in the pure collagen gel matrix used as a control. A live/dead cell assay also confirmed similar percentages of live cells within the core-shell carrier compared to those in the pure collagen gel, suggesting the carrier was cell compatible and was effective for maintaining a cell population. Cells allowed to differentiate under osteogenic conditions expressed high levels of bone-related genes, including osteocalcin, bone sialoprotein, and osteopontin. Further, when the core-shell fibrous carriers were implanted in a rat calvarium defect, the bone healing was significantly improved when the MSCs were encapsulated, and even more so after an osteogenic induction of MSCs before implantation. Based on these results, the newly designed core-shell collagen-alginate fibrous carrier is considered promising to enable the encapsulation of tissue cells and their delivery into damaged target tissues, including bone with defect-tunability for bone tissue engineering.
We report the ability of aminated mesoporous silica nanoparticles (MSN-NH2) with large mesopore space and positive-charged surface to deliver genes within rat mesenchymal stem cells (MSCs). The amine functionalized inorganic nanoparticles were complexed with bone morphogenetic protein-2 (BMP2) plasmid DNA (pDNA) to study their transfection efficiency in MSCs. Intracellular uptake of the complex BMP2 pDNA/MSN-NH2 occurred significantly, with a transfection efficiency of approximately 68%. Furthermore, over 66% of the transfected cells produced BMP2 protein. The osteogenic differentiation of the transfected MSCs was demonstrated by the expression of bone-related genes and proteins including bone sialoprotein, osteopontin, and osteocalcin. The MSN-NH2 delivery vehicle for BMP2 pDNA developed in this study may be a potential gene delivery system for bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.