Radio Frequency Identification (RFID) technology has been broadly applied in the biological sciences to yield new insights into behavior, cognition, population biology, and distributions. RFID systems entail wireless communication between small tags that, when stimulated by an appropriate radio frequency transmission, emit a weak, short-range wireless signal that conveys a unique ID number. These tags, which often operate without a battery, can be attached to animals such that their presence at a particular location can be detected by an RFID reader. This paper describes an RFID data-logging system that can serve as the core for a wide variety of field and laboratory applications for monitoring the activities of individual animals. The core electronics are modeled on an Arduino circuit board, which is a hobbyist electronics system. Users can customize the hardware and software to accommodate their needs. We demonstrate the utility of the system with cursory descriptions of three real-world research applications. The first is a large-scale deployment that was used to examine individual breeding behaviors across four local populations of Wood Ducks. The second application employed an array of RFID-enabled bird feeders that allowed for tests of spatial cognition. Third, we describe a nest-box monitoring system that both records visits from breeding birds and administers experimental treatments, such as increasing temperature or playing audio recordings, in accordance to the presence/absence of individual birds. With these examples we do not attempt to relate details with regard to research findings; rather our intent is to demonstrate some of the possibilities enabled by our low-cost RFID system. Detailed descriptions, design files, and code are made available by means of the Open Science Framework.
The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.
Environmental changes caused by urbanization and noise pollution can have profound effects on acoustic communication. Many organisms use higher sound frequencies in urban environments with low-frequency noise, but the developmental and evolutionary mechanisms underlying these shifts are less clear. We used a common garden experiment to ask whether changes in minimum song frequency observed 30 years after a songbird colonized an urban environment are a consequence of behavioral flexibility or canalized changes that occur early in development. We captured male juvenile dark-eyed juncos (Junco hyemalis thurberi) from two recently diverged populations (urban and mountain) soon after they reached independence (aged 25-40 days), raised them in identical indoor aviaries, and studied their songs at an age of three years. We found that the large population difference in minimum frequency observed in the field persisted undiminished in the common garden despite the absence of noise. We also found some song sharing between the common garden and natal field populations, indicating that early song memorization before capture could contribute to the persistent song differences in adulthood. These results are the first to show that frequency shifts in urban birdsong are maintained in the absence of noise by genetic evolution and/or early life experiences..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.