The prevalence of H. pylori infection among children has significantly decreased during the 11-year period of profound socioeconomic changes in Estonia.
Determination of the presence and spectra of AEA in patients with endometriosis and TFI undergoing IVF may be a useful marker to predict their pregnancy outcome.
Transglutaminase 2 (TG2) is an autoantigen in celiac disease (CD) and it has multiple biologic functions including involvement in cell adhesion through interactions with integrins, fibronectin (FN), and heparan sulfate proteoglycans. We aimed to delineate the heparin-binding regions of human TG2 by studying binding kinetics of the predicted heparin-binding peptides using surface plasmon resonance method. In addition, we characterized immunogenicity of the TG2 peptides and their effect on cell adhesion. The high-affinity binding of human TG2 to the immobilized heparin was observed, and two TG2 peptides, P1 (amino acids 202-215) and P2 (261-274), were found to bind heparin. The amino acid sequences corresponding to the heparin-binding peptides were located close to each other on the surface of the TG2 molecule as part of the α-helical structures. The heparin-binding peptides displayed increased immunoreactivity against serum IgA of CD patients compared with other TG2 peptides. The cell adhesion reducing effect of the peptide P2 was revealed in Caco-2 intestinal epithelial cell attachment to the FN and FN-TG2 coated surfaces. We propose that TG2 amino acid sequences 202-215 and 261-274 could be involved in binding of TG2 to cell surface heparan sulfates. High immunoreactivity of the corresponding heparin-binding peptides of TG2 with CD patient's IgA supports the previously described role of anti-TG2 autoantibodies interfering with this interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.