Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this “metabolic imprinting” phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.
IMPORTANCE Hypothermia for 72 hours at 33.5°C for neonatal hypoxic-ischemic encephalopathy reduces death or disability, but rates continue to be high. OBJECTIVE To determine if cooling for 120 hours or to a temperature of 32.0°C reduces death or disability at age 18 months in infants with hypoxic-ischemic encephalopathy. DESIGN, SETTING, AND PARTICIPANTS Randomized 2 × 2 factorial clinical trial in neonates (≥36 weeks’ gestation) with hypoxic-ischemic encephalopathy at 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network between October 2010 and January 2016. INTERVENTIONS A total of 364 neonates were randomly assigned to 4 hypothermia groups: 33.5°C for 72 hours (n = 95), 32.0°C for 72 hours (n = 90), 33.5°C for 120 hours (n = 96), or 32.0°C for 120 hours (n = 83). MAIN OUTCOMES AND MEASURES The primary outcome was death or moderate or severe disability at 18 to 22 months of age adjusted for center and level of encephalopathy. Severe disability included any of Bayley Scales of Infant Development III cognitive score less than 70, Gross Motor Function Classification System (GMFCS) level of 3 to 5, or blindness or hearing loss despite amplification. Moderate disability was defined as a cognitive score of 70 to 84 and either GMFCS level 2, active seizures, or hearing with amplification. RESULTS The trial was stopped for safety and futility in November 2013 after 364 of the planned 726 infants were enrolled. Among 347 infants (95%) with primary outcome data (mean age at follow-up, 20.7 [SD, 3.5] months; 42% female), death or disability occurred in 56 of 176 (31.8%) cooled for 72 hours and 54 of 171 (31.6%) cooled for 120 hours (adjusted risk ratio, 0.92 [95% CI, 0.68–1.25]; adjusted absolute risk difference, −1.0% [95% CI, −10.2% to 8.1%]) and in 59 of 185 (31.9%) cooled to 33.5°C and 51 of 162 (31.5%) cooled to 32.0°C (adjusted risk ratio, 0.92 [95% CI, 0.68–1.26]; adjusted absolute risk difference, −3.1% [95% CI, −12.3% to 6.1%]). A significant interaction between longer and deeper cooling was observed (P = .048), with primary outcome rates of 29.3% at 33.5°C for 72 hours, 34.5% at 32.0°C for 72 hours, 34.4% at 33.5°C for 120 hours, and 28.2% at 32.0°C for 120 hours. CONCLUSIONS AND RELEVANCE Among term neonates with moderate or severe hypoxic-ischemic encephalopathy, cooling for longer than 72 hours, cooling to lower than 33.5°C, or both did not reduce death or moderate or severe disability at 18 months of age. However, the trial may be underpowered, and an interaction was found between longer and deeper cooling. These results support the current regimen of cooling for 72 hours at 33.5°C. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01192776
IMPORTANCE Hypothermia at 33.5°C for 72 hours for neonatal hypoxic ischemic encephalopathy reduces death or disability to 44% to 55%; longer cooling and deeper cooling are neuroprotective in animal models. OBJECTIVE To determine if longer duration cooling (120 hours), deeper cooling (32.0°C), or both are superior to cooling at 33.5°C for 72 hours in neonates who are full-term with moderate or severe hypoxic ischemic encephalopathy. DESIGN, SETTING, AND PARTICIPANTS Arandomized, 2 × 2 factorial design clinical trial performed in 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Neonatal Research Network between October 2010 and November 2013. INTERVENTIONS Neonates were assigned to 4 hypothermia groups; 33.5°C for 72 hours, 32.0°C for 72 hours, 33.5°C for 120 hours, and 32.0°C for 120 hours. MAIN OUTCOMES AND MEASURES The primary outcome of death or disability at 18 to 22 months is ongoing. The independent data and safety monitoring committee paused the trial to evaluate safety (cardiac arrhythmia, persistent acidosis, major vessel thrombosis and bleeding, and death in the neonatal intensive care unit [NICU]) after the first 50 neonates were enrolled, then after every subsequent 25 neonates. The trial was closed for emerging safety profile and futility analysis after the eighth review with 364 neonates enrolled (of 726 planned). This report focuses on safety and NICU deaths by marginal comparisons of 72 hours’ vs 120 hours’ duration and 33.5°C depth vs 32.0°C depth (predefined secondary outcomes). RESULTS The NICU death rates were 7 of 95 neonates (7%) for the 33.5°C for 72 hours group, 13 of 90 neonates (14%) for the 32.0°C for 72 hours group, 15 of 96 neonates (16%) for the 33.5°C for 120 hours group, and 14 of 83 neonates (17%) for the 32.0°C for 120 hours group. The adjusted risk ratio (RR) for NICU deaths for the 120 hours group vs 72 hours group was 1.37 (95% CI, 0.92–2.04) and for the 32.0°C group vs 33.5°C group was 1.24 (95% CI, 0.69–2.25). Safety outcomes were similar between the 120 hours group vs 72 hours group and the 32.0°C group vs 33.5°C group, except major bleeding occurred among 1% in the 120 hours group vs 3% in the 72 hours group (RR, 0.25 [95% CI, 0.07–0.91]). Futility analysis determined that the probability of detecting a statistically significant benefit for longer cooling, deeper cooling, or both for NICU death was less than 2%. CONCLUSIONS AND RELEVANCE Among neonates who were full-term with moderate or severe hypoxic ischemic encephalopathy, longer cooling, deeper cooling, or both compared with hypothermia at 33.5°C for 72 hours did not reduce NICU death. These results have implications for patient care and design of future trials.
To determine mechanisms underlying the transgenerational presence of metabolic perturbations in the intrauterine growth-restricted secondgeneration adult females (F2 IUGR) despite normalizing the in utero metabolic environment, we examined in vivo glucose kinetics and in vitro skeletal muscle postinsulin receptor signaling after embryo transfer of first generation (F1 IUGR) to control maternal environment. Female F2 rats, procreated by F1 pre-and postnatally nutrientand growth-restricted (IUGR) mothers but embryo transferred to gestate in control mothers, were compared with similarly gestating age-and sex-matched control (CON) F2 progeny. Although there were no differences in birth weight or postnatal growth patterns, the F2 IUGR had increased hepatic weight, fasting hyperglycemia, hyperinsulinemia, and unsuppressed hepatic glucose production, with no change in glucose futile cycling or clearance, compared with F2 CON. These hormonal and metabolic aberrations were associated with increased skeletal muscle total GLUT4 and pAkt concentrations but decreased plasma membrane-associated GLUT4, total pPKC, and PKC enzyme activity, with no change in total SHP2 and PTP1B concentrations in IUGR F2 compared with F2 CON. We conclude that transgenerational presence of aberrant glucose/insulin metabolism and skeletal muscle insulin signaling of the adult F2 IUGR female offspring is independent of the immediate intrauterine environment, supporting nutritionally induced heritable mechanisms contributing to the epidemic of type 2 diabetes mellitus. glucose transporter; metabolic imprinting; epigenetic inheritance EPIDEMIOLOGICAL INVESTIGATIONS have linked pre-and postnatal nutrient restriction to adult-onset insulin resistance/type 2 diabetes mellitus, obesity, hypertension, and coronary artery disease (1, 2). Mimicking these conditions, animal models exposing the fetus or newborn to malnutrition in the form of either global (8,24,32) or selective nutrient restriction (6) with concomitant growth restriction predispose the adult offspring toward developing glucose intolerance (8, 24) and insulin resistance of postreceptor insulin-signaling pathways in skeletal muscle (21) and adipose tissue (6). This phenotype of aberrant glucose/insulin homeostasis persists transgenerationally from a gestationally diabetic adult intrauterine growthrestricted (IUGR) mother to the offspring (4). Various investigations have demonstrated a role for diminished pancreatic -cells in type 2 diabetes mellitus as well, an aberration that is passed on transgenerationally (3, 17, 27). Although mutations of genetic loci responsible for insulin production are inherited (33, 34), emerging information suggests epigenetic regulation underlying this transgenerational inheritance pattern (7, 13, 18).In the first-generation (F1) adult female IUGR offspring with pre-and postnatal nutrient restriction, metabolic adaptations concerning glucose/insulin homeostasis consist of a diminution in glucose-induced insulin response with emerging hepatic insulin resistance (8) ...
A randomized clinical trail (RCT) employed a 12-month individualized cognitive/sensorimotor stimulation program to look at the efficacy of the intervention on 62 infants with suspected brain injury. The control group infants received the State-funded follow-up program provided by the Los Angeles (LA) Regional Centers while the intervention group received intensive stimulation using the Curriculum and Monitoring System (CAMS) taught by public health nurses (PHNs). The developmental assessments and outcome measures were performed at 6, 12 and 18 months corrected age and included the Bayley motor and mental development, the Home, mother-infant interaction (Nursing Child Assessment Feeding Scale (NCAFS) and Nursing Child Assessment Teaching Scale (NCATS)), parental stress and social support. At 18 months, 43 infants remained in the study.The results indicate that the intervention had minimal positive effects on the Bayley mental and motor development scores of infants in the intervention group. Likewise, the intervention did not contribute to less stress or better mother-infant interaction at 12 or 18 months although there were significant differences in the NCAFS scores favoring the intervention group at 6 months. There was a significant trend, however, for the control group to have a significant decrease over time on the Bayley mental scores. Although the sample was not large and attrition was at 31%, this study provides further support to the minimal effects of stimulation and home intervention for infants with brain injury and who may have more significant factors contributing to their developmental outcome. Keywords Newborn brain injury; Stimulation; Intervention; OutcomeOver the past 30 years, evidence has been accumulating for the neuro-plasticity of the human brain, allowing for recovery of important brain regions after injury. The organization of interconnected neurons, which make up neural systems, is not structurally or functionally rigid as once believed. Rather, individual neurons are able to modify their intrinsic membrane properties and the strength of their synaptic connections in response to varying levels of stimulation (du Plessis & Volpe, 2002;Kennedy & Marder, 1992). The newborn's brain develops in a stepwise, organized fashion. It involves the unfolding of discrete, sequential embryonic processes that include the division, migration and differentiation of neural elements, dendritic arborization, and maturation of synapses. As the brain develops and matures, behavioral patterns emerge that reflect the integration of complex cerebral networks (Berger & Garnier, 1999;Volpe, 2000).Several factors are implicated in the etiology of brain injury. The most common cause is hypoxic-ischemic encephalopathy (HIE) which has been associated with neuronal reorganization. Current data suggest that about 2-5 of 1000 live term births experience hypoxic-ischemic brain injury or intraventricular hemorrhage (IVH) of those, 30-40% die during the newborn period and 20-50%; of those, who survive develop signif...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.