Magnesium is an ideal candidate for biodegradable implants, but the major concern is its uncontrollable degradation for application as a biomaterial. The in vitro corrosion and cytotoxicity of Mg-0.4Ce/ZnO 2 (magnesium nanocomposites) were studied to determine its suitability as a biodegradable material. The polycrystalline nature of Mg-0.4Ce/ZnO 2 was assessed using an optical microscope. The hydrophobic nature of Mg-0.4Ce/ZnO 2 was determined by contact angle measurements. The corrosion resistance of magnesium nanocomposites was tested in phosphate buffer solution (PBS) and it was improved by the gradual deposition of a protective layer on its surface after 48 h. The cytotoxicity of Mg-0.4Ce/ZnO 2 was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and calcium deposition by Alizarin red staining using sarcoma osteogenic (Saos2) cells. The haemocompatibility test of Mg-0.4Ce/ZnO 2 showed 30% haemolysis, which is higher than the safe value for biomaterials, and cell viability was reduced after 24 h in comparison with control groups. The calcium deposition by sarcoma osteogenic cells showed a brick red colour deposition in both the control group and Mg-0.4Ce/ZnO 2 after 24 h. The preliminary degradation results of Mg-0.4Ce/ZnO 2 showed good corrosion resistance; however further improvement is needed in haemolysis and cytotoxicity studies for its use as a biodegradable material for orthopaedic applications. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The present study focuses on fabrication and characterisation of porous composite scaffold containing hydroxyapatite (HAP), chitosan, and gelatin with an average pore size of 250-1010 nm for improving wound repair and regeneration by Electrospinning method. From the results of X-Ray Diffraction (XRD) study, the peaks correspond to crystallographic structure of HAP powder. The presence of functional group bonds of HAP powder, Chitosan and scaffold was studied using Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the scaffold was observed using Scanning Electron Microscope (SEM). The Bioactivity of the Nano composite scaffolds was studied using simulated body fluid solution at 37 ± 1°C. The biodegradability test was studied using Tris-Buffer solution for the prepared nanocomposites [nano Chitosan, nano Chitosan gelatin, Nano based Hydroxyapatite Chitosan gelatin]. The cell migration and potential biocompatibility of nHAPchitosan-gelatin scaffold was assessed via wound scratch assay and were compared to povedeen as control. Cytocompatibility evaluation for Vero Cells using wound scratch assay showed that the fabricated porous nanocomposite scaffold possess higher cell proliferation and growth than that of povedeen. Thus, the study showed that the developed nanocomposite scaffolds are potential candidates for regenerating damaged cell tissue in wound healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.