Congenital heart disease is the most common type of birth defect with an incidence of 1%. Previously, we described a point mutation in GATA4 that segregated with cardiac defects in a family with autosomal dominant disease. The mutation (G296S) exhibited biochemical deficits and disrupted a novel interaction between Gata4 and Tbx5. To determine if Gata4 and Tbx5 genetically interact in vivo, we generated mice heterozygous for both alleles. We found that nearly 100% of mice heterozygous for Gata4 and Tbx5 were embryonic or neonatal lethal and had complete atrioventricular (AV) septal defects with a single AV valve and myocardial thinning. Consistent with this phenotype, Gata4 and Tbx5 are co-expressed in the developing endocardial cushions and myocardium. In mutant embryos, cardiomyocyte proliferation deficits were identified compatible with the myocardial hypoplasia. Similar to Gata4, Gata6 and Tbx5 are co-expressed in the embryonic heart, and the transcription factors synergistically activate the atrial natiuretic factor promoter. We demonstrate a genetic interaction between Gata6 and Tbx5 with an incompletely penetrant phenotype of neonatal lethality and thin myocardium. Gene expression analyses were performed on both sets of compound heterozygotes and demonstrated downregulation of α-myosin heavy chain only in Gata4/Tbx5 heterozygotes. These findings highlight the unique genetic interactions of Gata4 and Gata6 with Tbx5 for normal cardiac morphogenesis in vivo.
Rare heterozygous mutations in the gene encoding surfactant protein A2 (SP-A2, SFTPA2) are associated with adult-onset pulmonary fibrosis and adenocarcinoma of the lung. We have previously shown that two recombinant SP-A2 mutant proteins (G231V and F198S) remain within the endoplasmic reticulum (ER) of A549 cells and are not secreted into the culture medium. The pathogenic mechanism of the mutant proteins is unknown. Here we analyze all common and rare variants of the surfactant protein A2, SP-A2, in both A549 cells and in primary type II alveolar epithelial cells. We show that, in contrast with all other SP-A2 variants, the mutant proteins are not secreted into the medium with wild-type SP-A isoforms, form fewer intracellular dimer and trimer oligomers, are partially insoluble in 0.5% Nonidet P-40 lysates of transfected A549 cells, and demonstrate greater protein instability in chymotrypsin proteolytic digestions. Both the G231V and F198S mutant SP-A2 proteins are destroyed via the ER-association degradation pathway. Expression of the mutant proteins increases the transcription of a BiP-reporter construct, expression of BiP protein, and production of an ER stress-induced XBP-1 spliced product. Human bronchoalveolar wash samples from individuals who are heterozygous for the G231V mutation have similar levels of total SP-A as normal family members, which suggests that the mechanism of disease does not involve an overt lack of secreted SP-A but instead involves an increase in ER stress of resident type II alveolar epithelial cells.Inhaled oxygen and exhaled carbon dioxide gas must diffuse across the distal lung for effective gas exchange. This interface includes alveolar surfactant, which lowers the surface tension of the distal lung, the alveolar epithelial cells, and the supporting interstitium in which the capillary vascular bed resides. The phospholipids and proteins in surfactant are made and secreted by the type II alveolar epithelial cells, which cover about 5% of alveolar surface area and have a distinct morphology with characteristic lamellar bodies and apical microvilli (1).The pulmonary surfactant protein B and C, SP-B 2 and SP-C, are very hydrophobic proteins that stabilize the surfactant lipids and reduce the surface tension in the alveolus. Mutations in the genes encoding SP-B and SP-C are associated with respiratory failure and a range of interstitial lung diseases in children and adults (2). Mutations in either of these genes result in decreased expression of secreted surfactant protein SP-B and SP-C. A subset of heterozygous mutations in the gene encoding SP-C has a dominant-negative effect on protein biosynthesis and leads to the formation of intracellular protein aggregates (3). Mutations in SP-C that prevent the protein from folding into a stable conformation lead to the activation of the unfolded protein response that increases transcription of ER chaperones, including BiP, and promotes their destruction via the ER-associated degradation pathway (4 -6).Surfactant protein A and D, SP-A and SP-D...
ABSTRACT:Although the etiology for the majority of congenital heart disease (CHD) remains poorly understood, the known genetic causes are often the result of mutations in cardiac developmental genes. GATA6 encodes for a cardiac transcription factor, which is broadly expressed in the developing heart and is critical for normal cardiac morphogenesis, making it a candidate gene for congenital heart defects in humans. The objective of this study was to determine the frequency of GATA6 sequence variants in a population of individuals with a spectrum of cardiac malformations. The coding regions of GATA6 were sequenced in 310 individuals with CHD. We identified two novel sequence variations in GATA6 that altered highly conserved amino acid residues (A178V and L198V) and were not found in a control population. These variants were identified in two individuals (one with tetralogy of Fallot and the other with an atrioventricular septal defect in the setting of complex CHD). Biochemical studies demonstrate that the GATA6 A178V mutant protein results in increased transactivation ability when compared with wild-type GATA6. These data suggest that nonsynonymous GATA6 sequence variants are infrequently found in individuals with CHD. (Pediatr Res 68: 281-285, 2010)
Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 ( SFTPA2 ) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2–mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1–binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan–TGF-β–neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β–mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients.
Background Helicobacter pylori elicited IL1B is one of the various modulators responsible for perturbation of acid secretion in gut. We have earlier reported that IL1B activated NFkB downregulates gastrin, a major modulator of acid secretion. However, we hypothesized that regulation of gastrin by IL1B would depend on the cell's ability to integrate inputs from multiple signaling pathways to generate appropriate biological response.Principal FindingIn this study, we report that IL1B induces Smad 7 expression by about 4.5 fold in gastric carcinoma cell line, AGS. Smad 7 resulted in transcriptional repression of gastrin promoter by about 6.5 fold when co -transfected with Smad 7 expression vector and gastrin-promoter luciferase in AGS cells. IL1B inhibited phosphorylation of Smad 3 and subsequently interfered with nuclear translocation of the positive Smad complex, thus occluding it off the gastrin promoter. IL1B promoter polymorphisms (-511T/-31C IL1B) are known to be associated with H. pylori associated gastro-duodenal ulcer. We observed that IL1B expressed from -31T promoter driven IL1B cDNA elicited 3.5 fold more Smad 7 than that expressed from the IL1B-31C variant in AGS cells. This differential activation of Smad 7 by IL1B promoter variants translated into differential downregulation of gastrin expression. We further analyzed Smad 7, NFkB, IL1B and gastrin expression in antral gut biopsy samples of patients with H. pylori associated duodenal ulcer and normal individuals. We observed that individuals with duodenal ulcer had significantly lower levels of IL1B, Smad 7, NFkB and corresponding higher level of gastrin expression.ConclusionPro-inflammatory cytokine IL1B repress gastrin expression by activating Smad 7 and subsequent inhibition of nuclear localization of Smad 3/4 complex. Polymorphic promoter variants of IL1B gene can modulate the IL1B expression which resulted in differential activation Smad 7 and consequent repression of gastrin expression, respectively. Analysis of H. pylori infected duodenal ulcer patient's gut biopsy samples also supported this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.