Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Obesity is an inflammatory disease that is approaching pandemic levels, affecting nearly 30% of the world’s total population. Obesity increases the risk of diabetes, cardiovascular disorders, and cancer, consequentially impacting the quality of life and imposing a serious socioeconomic burden. Hence, reducing obesity and related life-threatening conditions has become a paramount health challenge. The chronic systemic inflammation characteristic of obesity promotes adipose tissue remodeling and metabolic changes. Macrophages, the major culprits in obesity-induced inflammation, contribute to sustaining a dysregulated immune function, which creates a vicious adipocyte–macrophage crosstalk, leading to insulin resistance and metabolic disorders. Therefore, targeting regulatory inflammatory pathways has attracted great attention to overcome obesity and its related conditions. However, the lack of clinical efficacy and the undesirable side-effects of available therapeutic options for obesity provide compelling reasons for the need to identify additional approaches for the prevention and treatment of obesity-induced inflammation. Plant-based active metabolites or nutraceuticals and diets with an increased content of these compounds are emerging as subjects of intense scientific investigation, due to their ability to ameliorate inflammatory conditions and offer safe and cost-effective opportunities to improve health. Flavones are a class of flavonoids with anti-obesogenic, anti-inflammatory and anti-carcinogenic properties. Preclinical studies have laid foundations by establishing the potential role of flavones in suppressing adipogenesis, inducing browning, modulating immune responses in the adipose tissues, and hindering obesity-induced inflammation. Nonetheless, the understanding of the molecular mechanisms responsible for the anti-obesogenic activity of flavones remains scarce and requires further investigations. This review recapitulates the molecular aspects of obesity-induced inflammation and the crosstalk between adipocytes and macrophages, while focusing on the current evidence on the health benefits of flavones against obesity and chronic inflammation, which has been positively correlated with an enhanced cancer incidence. We conclude the review by highlighting the areas of research warranting a deeper investigation, with an emphasis on flavones and their potential impact on the crosstalk between adipocytes, the immune system, the gut microbiome, and their role in the regulation of obesity.
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Triple-negative breast cancer (TNBC) is one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. To this end, the cytotoxic effects of the prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3), and non-prenylated resveratrol (RES) were evaluated in human TNBC cell lines as potential adjuvants for paclitaxel (Pac). A-1, alone or in combination with Pac, showed the highest cytotoxicity in TNBC cells. Apoptosis was further evaluated by measuring key apoptosis marker proteins, cell cycle arrest, and intracellular reactive oxygen species (ROS) generation. Furthermore, the cytotoxic effect of A-1 combined with Pac was also evaluated in a 3D spheroid TNBC model. The results showed that A-1 decreased the Pac IC50 approximately 2-fold in TNBC cells. The synergistic combination of A-1 and Pac arrested cells in G2/M phase and activated p53 expression. In addition, the combined treatment increased intracellular ROS generation and induced apoptosis. Importantly, the combination of A-1 with Pac inhibited TNBC spheroid growth. Our results demonstrated that A-1 in combination with Pac inhibited cell proliferation, induced apoptosis through mitochondrial oxidative stress, and reduced TNBC spheroid growth. These findings underscore the impactful effects of the prenylated stilbenoid A-1 as a novel adjuvant for Pac chemotherapy in TNBC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.