In recent times, ransomware has become the most significant cyber-attack targeting individuals, enterprises, healthcare industries, and the Internet of Things (IoT). Existing security systems like Intrusion Detection and Prevention System (IDPS) and Anti-virus (AV) as a single monitoring agent is complicated and timeconsuming, thus fails in ransomware detection. A robust Intrusion Detection Honeypot (IDH) is proposed to address the issues mentioned above. IDH consists of i) Honeyfolder, ii) Audit Watch, and iii) Complex Event Processing (CEP). Honeyfolder is a decoy folder modeled using Social Leopard Algorithm (SoLA), especially for getting attacked and acting as an early warning system to alert the user during the suspicious file activities. AuditWatch is an Entropy module that verifies the entropy of the files and folders. CEP engine is used to aggregate data from different security systems to confirm the ransomware behavior, attack pattern, and promptly respond to them. The proposed IDH is experimentally tested in a secured testbed using more than 20 variants of recent ransomware of all types. The experimental result confirms that the proposed IDH significantly improves the ransomware detection time, rate, and accuracy compared with the existing state of the art ransomware detection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.