Sensor platforms that exploit the fibrous textile threads as substrates offer great promise since they can be directly sewn, woven or stitched on to any clothing. They can also be placed directly in intimate contact with the skin. In this work, we present a threadbased sensing platform in the form of a multiplexed sensing patch for continuous simultaneous on-skin monitoring of sweat. The patch performs real-time, on-body measurements of important biomarkers present in sweat such as electrolytes (sodium and ammonium ions), metabolites (lactate) and acidity (pH). Flexible threads coated with conductive inks were used as sensing electrodes. Selective potentiometric detection of electrolytes and pH was made possible through ion-selective membrane deposition and pH-sensitive polyaniline coating on threads, respectively. An amperometric enzymatic sensing scheme with lactate oxidase was used for the detection of lactate. An array of the thread sensors is integrated onto a patch with connectivity to a miniaturized circuit module containing a potentiostat, microprocessor and wireless circuitry for wireless smartphone readout. Extensive in vitro validation and an in vivo human pilot study involving a maximal exertion test show the promise of this platform for real-time physiological monitoring of human performance/fitness under stress, as well as diagnostic monitoring through sweat analysis.
Isolation of cells and their transfection in a controlled manner is an integral step in cell biotechnology. Electric field approaches such as dielectrophoresis (DEP) offers a more viable method for targeted immobilization of cells without any labels. For transfection of cells to incorporate exogenous materials, electrical methods such as electroporation, are preferred over chemical and viral delivery methods since they minimally affect cell viability and can target many types. However prior approaches to both methods required multiple excitation sources, an AC source for DEP-based trapping and another DC source for electroporation. In this paper, we present a first of its kind flow through lab-on-chip platform using a single AC excitation source for combined trapping using negative dielectrophoresis (nDEP) and AC electroporation. Use of AC fields for electroporation eliminates the unwanted side effects of electrolysis or joule heating at electrodes compared to DC electroporation. Adjusting the flow rate and the electrical parameters of the incident AC field precisely controls the operation (trap, trap with electroporation and release). The platform has been validated through trapping and simultaneous transfection of HEK-293 embryonic kidney cells with a plasmid vector containing a fluorescent protein tag. Numerical scaling analysis is provided that indicates promise for individual cell trapping and electroporation using low voltage AC fields.
Paper-based microfluidic devices with screen-printed electrodes (SPEs) for electrochemical sensing are popular for low-cost point-of-care diagnostics. The electroactive sensing area in these devices is always the irregular, bottom-SPE surface which is in contact with the analyte flowing within the paper substrate. Unfortunately, this results in an electroactive area which varies widely from sensor to sensor. In this paper, we present a three-dimensional paper-based analytical device with a hollow 3D fluid reservoir which allows for use of a more uniform top-SPE surface as the electroactive sensing area. The use of this isolated reservoir eliminates the need for dielectric inks used in conventional SPEs on paper. Our sensors are fabricated using a combination of wax-printing, screen-printing and simple folding via a cleanroom free process without the need for expensive equipment. Additionally, for the first time, we demonstrate an electrochemical paper-based analytical device with a custom designed potentiostat integrated circuit (IC) as a miniaturized reader. The versatility of the sensor is demonstrated through voltammetric, amperometric and potentiometric measurements of important biochemical analytes such as dopamine, glucose and pH. The 3D ePAD together with a custom CMOS potentiostat demonstrates a low-cost, versatile, self-contained system suitable for point-of-care diagnostic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.