Fault detection and isolation is a crucial and challenging task in the automatic control of large complex systems. We propose a discrete-event system (DES) approach to the problem of failure diagnosis. We introduce two related notions of diagnosability of DES's in the framework of formal languages and compare diagnosability with the related notions of observability and invertibility. We present a systematic procedure for detection and isolation of failure events using diagnosers and provide necessary and sufficient conditions for a language to be diagnosable. The diagnoser performs diagnostics using online observations of the system behavior; it is also used to state and verify off-line the necessary and sufficient conditions for diagnosability. These conditions are stated on the diagnoser or variations thereof. The approach to failure diagnosis presented in this paper is applicable to systems that fall naturally in the class of DES's; moreover, for the purpose of diagnosis, most continuous variable dynamic systems can be viewed as DES's at a higher level of abstraction. In a companion paper [20], we provide a methodology for building DES models for the purpose of failure diagnosis and present applications of the theory developed in this paper.
Abstruct-Detection and isolation of failures in large, complex systems is a crucial and challenging task. The increasingly stringent requirements on performance and reliability of complex technological systems have necessitated the development of sophisticated and systematic methods for the timely and accurate diagnosis of system failures. We propose a discrete-event systems (DES) approach to the failure diagnosis problem. This approach is applicable to systems that fall naturally in the class of DES; moreover, for the purpose of diagnosis, continuous-variable dynamic systems can often be viewed as DES at a higher level of abstraction. We present a methodology for modeling physical systems in a DES framework and illustrate this method with examples. We discuss the notion of diagnosability, the construction procedure of the diagnoser, and necessary and sufficient conditions for diagnosability. Finally, we illustrate our approach using realistic models of two different heating, ventilation, and air conditioning (HVAC) systems, one diagnosable and the other not diagnosable. While the modeling methodology presented here has been developed for the purpose of failure diagnosis, its scope is not restricted to this problem; it can also be used to develop DES models for other purposes such as control. A detailed treatment of the theory underlying our approach can be found in a companion paper [27].
Abstruct-Detection and isolation of failures in large, complex systems is a crucial and challenging task. The increasingly stringent requirements on performance and reliability of complex technological systems have necessitated the development of sophisticated and systematic methods for the timely and accurate diagnosis of system failures. We propose a discrete-event systems (DES) approach to the failure diagnosis problem. This approach is applicable to systems that fall naturally in the class of DES; moreover, for the purpose of diagnosis, continuous-variable dynamic systems can often be viewed as DES at a higher level of abstraction. We present a methodology for modeling physical systems in a DES framework and illustrate this method with examples. We discuss the notion of diagnosability, the construction procedure of the diagnoser, and necessary and sufficient conditions for diagnosability. Finally, we illustrate our approach using realistic models of two different heating, ventilation, and air conditioning (HVAC) systems, one diagnosable and the other not diagnosable. While the modeling methodology presented here has been developed for the purpose of failure diagnosis, its scope is not restricted to this problem; it can also be used to develop DES models for other purposes such as control. A detailed treatment of the theory underlying our approach can be found in a companion paper [27].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.