Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette–Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Background Advances in metabolomics are anticipated to decipher associations between dietary exposures and health. Replication biomarker studies in different populations are critical to demonstrate generalizability. Objectives To identify and validate robust serum metabolites associated with diet quality and specific foods in a multi-ethnic cohort of pregnant women. Design In this cross-sectional analysis of 3 multi-ethnic Canadian birth cohorts, we collected semi-quantitative food frequency questionnaires (FFQ) and serum from 900 women at the second trimester of pregnancy. We calculated a diet quality score (DQS), defined as daily servings of “healthy” minus “unhealthy” foods. Serum metabolomics was performed by multisegment injection-capillary electrophoresis-mass spectrometry, and specific serum metabolites associated with maternal diet quality scores were identified. We combined the results across all 3 cohorts using meta-analysis to classify robust dietary biomarkers (r > ± 0.1, p < 0.05). Results Diet quality was higher in the South Asian birth cohort (mean DQS = 7.1) than the two white Caucasian birth cohorts (mean DQS < 3.2). Sixty-six metabolites were detected with high frequency (> 75%) and adequate precision (CV < 30%), and 47 were common to all cohorts. Hippuric acid was positively associated with healthy diet score in all cohorts, and with the overall DQS only in the primarily white Caucasian cohorts. We observed robust correlations between: 1) proline betaine-citrus foods; 2) 3-methylhistidine-red meat, chicken, and eggs; 3) hippuric acid-fruits and vegetables; 4) trimethylamine N-oxide (TMAO)-seafood, meat, and eggs; and 5) tryptophan betaine-nuts/legumes. Conclusions Specific serum metabolites reflect intake of citrus fruit/juice, vegetables, animal foods, and nuts/legumes in pregnant women independent of ethnicity, fasting status, and delays to storage across multiple collection centers. Robust biomarkers of overall diet quality varied by cohort. Proline betaine, 3-methylhistidine, hippuric acid, TMAO, and tryptophan betaine were robust dietary biomarkers for investigations of maternal nutrition in multi-ethnic populations.
Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (μ eff ) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The μ eff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the μ eff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.
A large body of evidence has linked unhealthy eating patterns with an alarming increase in obesity and chronic disease worldwide. However, existing methods of assessing dietary intake in nutritional epidemiology rely on food frequency questionnaires or dietary records that are prone to bias and selective reporting. Herein, metabolic phenotyping was performed on 42 healthy participants from the Diet and Gene Intervention (DIGEST) pilot study, a parallel two-arm randomized clinical trial that provided complete diets to all participants. Matching single-spot urine and fasting plasma specimens were collected at baseline, and then following two weeks of either a Prudent or Western diet with a weight-maintaining menu plan designed by a dietician. Targeted and nontargeted metabolite profiling was conducted using three complementary analytical platforms, where 80 plasma metabolites and 84 creatinine-normalized urinary metabolites were reliably measured (CV < 30%) in the majority of participants (>75%) after implementing a rigorous data workflow for metabolite authentication with stringent quality control. We classified a panel of metabolites with distinctive trajectories following two weeks of food provisions when using complementary univariate and multivariate statistical models. Unknown metabolites associated with contrasting dietary patterns were identified with high-resolution MS/MS, as well as co-elution after spiking with authentic standards if available. Overall, 3-methylhistidine and proline betaine concentrations increased in both plasma and urine samples after participants were assigned a Prudent diet (q < 0.05) with a corresponding decrease in the Western diet group. Similarly, creatinine-normalized urinary imidazole propionate, hydroxypipecolic acid, dihydroxybenzoic acid, and enterolactone glucuronide, as well as plasma ketoleucine and ketovaline increased with a Prudent diet (p < 0.05) after adjustments for age, sex, and BMI. In contrast, plasma myristic acid, linoelaidic acid, linoleic acid, α-linoleic acid, pentadecanoic acid, alanine, proline, carnitine, and deoxycarnitine, as well as urinary acesulfame K increased among participants following a Western diet. Most metabolites were also correlated (r > ± 0.30, p < 0.05) to changes in the average intake of specific nutrients from self-reported diet records reflecting good adherence to assigned food provisions. Our study revealed robust biomarkers sensitive to short-term changes in habitual diet, which is needed for accurate monitoring of healthy eating patterns in free-living populations, and evidence-based public health policies for chronic disease prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.