BackgroundComplete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail.Methodology/Principal FindingsWe conducted a retrospective longitudinal cohort study of client-owned dogs with unilateral CR to determine how severity of radiographic stifle synovial effusion and osteophytosis influence risk of contralateral CR over time. Detailed survival analysis was performed for a cohort of 85 dogs after case filtering of an initial sample population of 513 dogs. This population was stratified based on radiographic severity of synovial effusion (graded on a scale of 0, 1, and 2) and severity of osteophytosis (graded on a scale of 0, 1, 2, and 3) of both index and contralateral stifle joints using a reproducible scoring method. Severity of osteophytosis in the index and contralateral stifles was significantly correlated. Rupture of the contralateral cranial cruciate ligament was significantly influenced by radiographic OA in both the index and contralateral stifles at diagnosis. Odds ratio for development of contralateral CR in dogs with severe contralateral radiographic stifle effusion was 13.4 at one year after diagnosis and 11.4 at two years. Odds ratio for development of contralateral CR in dogs with severe contralateral osteophytosis was 9.9 at one year after diagnosis. These odds ratios were associated with decreased time to contralateral CR. Breed, age, body weight, gender, and tibial plateau angle did not significantly influence time to contralateral CR.ConclusionSubsequent contralateral CR is significantly influenced by severity of radiographic stifle effusion and osteophytosis in the contralateral stifle, suggesting that synovitis and arthritic joint degeneration are significant factors in the disease mechanism underlying the arthropathy.
Cranial cruciate ligament rupture (CR) is a degenerative condition in dogs that typically has a non-contact mechanism. Subsequent contralateral rupture often develops in dogs with unilateral CR. Synovitis severity is an important factor that promotes ligament degradation. Consequently, we wished to evaluate the utility of arthroscopy for assessment of stifle synovitis in dogs with CR. Herein, we report results of a prospective study of 27 dogs with unilateral CR and bilateral radiographic osteoarthritis. Arthroscopic images and synovial biopsies from the lateral and medial joint pouches were obtained bilaterally and graded for synovial hypertrophy, vascularity, and synovitis. Synovial tartrate-resistant acid phosphatase-positive (TRAP+) macrophages, CD3+ T lymphocytes, Factor VIII+ blood vessels, and synovial intima thickness were quantified histologically and related to arthroscopic observations. Risk of subsequent contralateral CR was examined using survival analysis. We found that arthroscopic scores were increased in the index stifle, compared with the contralateral stifle (p<0.05). Numbers of CD3+ T lymphocytes (SR = 0.50, p<0.05) and TRAP+ cells in joint pouches (SR = 0.59, p<0.01) were correlated between joint pairs. Arthroscopic grading of vascularity and synovitis was correlated with number density of Factor VIII+ vessels (SR>0.34, p<0.05). Arthroscopic grading of villus hypertrophy correlated with numbers of CD3+ T lymphocytes (SR = 0.34, p<0.05). Synovial intima thickness was correlated with arthroscopic hypertrophy, vascularity, and synovitis (SR>0.31, p<0.05). Strong intra-observer and moderate inter-observer agreement for arthroscopic scoring was found. Dog age and arthroscopic vascularity significantly influenced risk of contralateral CR over time. We conclude that arthroscopic grading of synovitis is a precise tool that correlates with histologic synovitis. Arthroscopy is useful for assessment of stifle synovitis in client-owned dogs, and could be used in longitudinal clinical trials to monitor synovial responses to disease-modifying therapy.
We utilized three independent techniques, immunocytochemistry (ICC), single cell mass spectrometry (MS), and in situ hybridization (ISH), to localize neuropeptides and their transcripts in the nervous system of the nematode Ascaris suum . AF11 (SDIGISEPNFLRFa) is an endogenous peptide with potent paralytic effects on A. suum locomotory behavior. A highly specific antibody to AF11 showed robust immunostaining for AF11 in the paired AVK neurons in the ventral ganglion. We traced the processes from the AVK neurons into the ventral nerve cord and identified them as ventral cord interneurons. MS and MS/MS of single dissected AVKs detected AF11, two previously characterized peptides (AF25 and AF26), seven novel sequence-related peptides, including several sharing a PNFLRFamide C-terminus, and peptide NY, a peptide with an unrelated sequence. Also present in a subset of AVKs was AF2, a peptide encoded by the afp-4 transcript. By sequencing the afp-11 transcript, we discovered that it encodes AF11, all the AF11-related peptides detected by MS in AVK, and peptide NY. ISH detected the afp-11 transcript in AVK neurons, consistent with other techniques. ISH did not detect afp-11 in the ALA neuron, although both ICC and MS found AF11 in ca. 30% of ALAs. All 10 AF11-related peptides reduced acetylcholine-induced muscle contraction, but they differed in their rate of reversal of inhibition after removal of the peptide.
Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.