Background There is a paucity of recent data and knowledge on mosquito diversity and potential vectors of arboviruses in South Africa, with most of the available data dating back to the 1950s–1970s. Aedes and Culex species are the major vectors of some of the principal arboviruses which have emerged and re-emerged in the past few decades. Methods In this study we used entomological surveillance in selected areas in the north-eastern parts of South Africa from 2014 to 2018 to assess mosquito diversity, with special emphasis on the Aedes species. The impact of trap types and environmental conditions was also investigated. Identification of the blood meal sources of engorged females collected during the study period was carried out, and DNA barcodes were generated for selected species. Results Overall, 18.5% of the total Culicidae mosquitoes collected belonged to the genus Aedes, with 14 species recognised or suspected vectors of arboviruses. Species belonging to the Neomelaniconion subgenus were commonly collected in the Bushveld savanna at conservation areas, especially Aedes mcintoshi and Aedes circumluteolus. Aedes aegypti was present in all sites, albeit in low numbers. Temperature was a limiting factor for the Aedes population, and they were almost exclusively collected at temperatures between 18 °C and 27 °C. The cytochrome oxidase subunit I (COI) barcode fragment was amplified for 21 Aedes species, and for nine of these species it was the first sequence information uploaded on GenBank. Conclusion This study provides a better understanding of the diversity and relative abundance of Aedes species in the north-east of South Africa. The information provided here will contribute to future arboviral research and implementation of efficient vector control and prevention strategies. Graphical abstract
Light is a fundamental cue regulating a host of biological responses. The artificial modification thereof demonstrably impacts a wide range of organisms. The use of artificial light is changing in type, extent and intensity. Insect vector-borne diseases remain a global scourge, but surprisingly few studies have directly investigated the interactions between artificial light and disease vectors, such as mosquitoes. Here we briefly overview the progress to date, which highlights that artificial light must be considered as a modulator of mosquito-borne disease risk. We discuss where the mechanisms may lie, and where future research could usefully be directed, particularly in advancing understanding of the biological effects of the light environment. Further understanding of how artificial light may modulate mosquito-borne disease risk may assist in employing and redesigning light regimes that do not increase, and may even mitigate, already significant disease burdens, especially in the developing world.
Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.
African horse sickness (AHS), a disease of equids caused by the AHS virus, is of major concern in South Africa. With mortality reaching up to 95% in susceptible horses and the apparent reoccurrence of cases in regions deemed non‐endemic, most particularly the Eastern Cape, epidemiological research into factors contributing to the increase in the range of this economically important virus became imperative. The vectors, Culicoides (Diptera: Ceratopogonidae), are considered unable to proliferate during the unfavourable climatic conditions experienced in winter in the province, although the annual occurrence of AHS suggests that the virus has become established and that vector activity continues throughout the year. Surveillance of Culicoides within the province is sparse and little was known of the diversity of vector species or the abundance of known vectors, Culicoides imicola and Culicoides bolitinos. Surveillance was performed using light trapping methods at selected sites with varying equid species over two winter and two outbreak seasons, aiming to determine diversity, abundance and vector epidemiology of Culicoides within the province. The research provided an updated checklist of Culicoides species within the Eastern Cape, contributing to an increase in the knowledge of AHS vector epidemiology, as well as prevention and control in southern Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.