The genetic basis of division of labor in social insects is a central question in evolutionary and behavioral biology. The honey bee is a model for studying evolutionary behavioral genetics because of its well characterized age-correlated division of labor. After an initial period of within-nest tasks, 2–3 week-old worker bees begin foraging outside the nest. Individuals often specialize by biasing their foraging efforts toward collecting pollen or nectar. Efforts to explain the origins of foraging specialization suggest that division of labor between nectar and pollen foraging specialists is influenced by genes with effects on reproductive physiology. Quantitative trait loci (QTL) mapping of foraging behavior also reveals candidate genes for reproductive traits. Here, we address the linkage of reproductive anatomy to behavior, using backcross QTL analysis, behavioral and anatomical phenotyping, candidate gene expression studies, and backcross confirmation of gene-to-anatomical trait associations. Our data show for the first time that the activity of two positional candidate genes for behavior, PDK1 and HR46, have direct genetic relationships to ovary size, a central reproductive trait that correlates with the nectar and pollen foraging bias of workers. These findings implicate two genes that were not known previously to influence complex social behavior. Also, they outline how selection may have acted on gene networks that affect reproductive resource allocation and behavior to facilitate the evolution of social foraging in honey bees.
Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys (‘mobile transects’) have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season.
Mist nets are commonly used to capture free-flying bats; however, some bat species are very difficult to capture because of their flight behavior, habitat preferences, and ability to avoid nets. High-flying, open-space foragers are especially underrepresented by mist-net surveys. Few studies have investigated the effectiveness of using acoustic lures (playbacks of conspecific vocalizations) to increase capture success of bats in mist nets. We tested the efficacy of an acoustic lure to capture a high-flying rare molossid, the endangered Florida bonneted bat (Eumops floridanus), which had been captured only once away from a known roost prior to our research. We used a crossover experimental design with 2 lure treatments (nets with lures playing social call recordings from 2 different roosts) and 2 control nets (no lures) in 6 sites for 2 nights each. We captured 15 Florida bonneted bats in our treatment nets and 0 in our control nets. One lure had greater capture success (n ¼ 13) than the other (n ¼ 2), with a trend for greater captures of males (n ¼ 11) than females (n ¼ 4). We suggest that these differences were due to the social context in which the calls used in the lures were recorded. Our study demonstrated the utility of acoustic lures to capture Florida bonneted bats and expands research opportunities critical to the species' conservation, such as the ability to use radio telemetry to track captured bats to unknown roosting and foraging areas. Our study also lays the foundation for future research into social call playbacks as a technique to lure other high-flying and elusive bat species into mist nets. Ó 2017 The Wildlife Society.
International audienceApis mellifera experiences large population declines in the USA and honeybee health is affected by many, potentially interacting factors that need to be addressed through a variety of approaches. In this context, we evaluated the impact of nutritional manipulations on worker physiology and colony demography. Specifically, we manipulated protein availability by feeding colonies on royal jelly, low-quality pollen, or regular pollen stores. After acclimation to these treatments, experimental cohorts of workers were introduced and later assessed with regards to life expectancy, protein content, and intestinal stem cell proliferation. We also monitored their hives for the amount of workers, brood, and pollen trapped in front of the hive entrances. Workers that fed on royal jelly showed a reduced rate of intestinal stem cell proliferation at nurse bee age. Total soluble protein content of individuals and adult worker lifespan were not systematically affected. However, we cannot exclude an auxiliary role of poor nutrition to declining bee health by weakening the intestinal epithelium. In contrast to the weak experimental effects on individual variables, the brood production differed drastically among the experimental hives. Although not yet replicated, this observation might indicate that hive demographic plasticity rather than individual plasticity is important for acclimation to different food regimes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.