This article presents results to date of the Dating Iroquoia project. Our objective is to develop high-precision radiocarbon chronologies for northeastern North American archaeology. Here, we employ Bayesian chronological modeling of 184 AMS radiocarbon dates derived from 42 Northern Iroquoian village sites in five regional sequences in order to construct new date estimates. The resulting revised chronology demands a rethinking of key assumptions about cultural process in the region regarding the directionality and timing of processes of coalescence and conflict and the introduction of European trade goods. The results suggest that internal conflict may have preceded confederacy formation among the Haudenosaunee but not the Wendat, as has been previously assumed. External conflict, previously thought to have begun in the early seventeenth century, began more than a century earlier. New data also indicate that the timing and distribution of European materials were more variable between communities than acknowledged by the logic underlying traditional trade-good chronologies. This enhanced chronological resolution permits the development and application of archaeological theories that center the lived experiences and relational histories of Iroquoian communities, as opposed to the generalized thinking that has dominated past explanatory frameworks.
Radiocarbon dating is rarely used in historical or contact-era North American archaeology because of idiosyncrasies of the calibration curve that result in ambiguous calendar dates for this period. We explore the potential and requirements for radiocarbon dating and Bayesian analysis to create a time frame for early contact-era sites in northeast North America independent of the assumptions and approximations involved in temporal constructs based on trade goods and other archaeological correlates. To illustrate, we use Bayesian chronological modeling to analyze radiocarbon dates on short-lived samples and a post from four Huron-Wendat Arendarhonon sites (Benson, Sopher, Ball, and Warminster) to establish an independent chronology. We find that Warminster was likely occupied in 1615–1616, and so is the most likely candidate for the site of Cahiagué visited by Samuel de Champlain in 1615–1616, versus the other main suggested alternative, Ball, which dates earlier, as do the Sopher and Benson sites. In fact, the Benson site seems likely to date ~50 years earlier than currently thought. We present the methods employed to arrive at these new, independent age estimates and argue that absolute redating of historic-era sites is necessary to accurately assess existing interpretations based on relative dating and associated regional narratives.
Reversals and plateaus in the radiocarbon (14C) calibration curve lead to similar 14C ages applying to a wide range of calendar dates, creating imprecision, ambiguity, and challenges for archaeological dating. Even with Bayesian chronological modeling, such periods remain a problem when no known order—e.g., a stratigraphic sequence—exists, and especially if site durations are relatively short. Using the reversal/plateau AD 1480–1630 and the archaeology of northeastern North America as our example, we consider possible strategies to improve chronological resolution across such reversal/plateau periods in the absence of stratigraphic sequences, including uses of wood-charcoal TPQs from even very short wiggle-matches, and site phase duration constraints based on ethnohistoric and archaeological evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.