We present the first high-resolution sub-mm survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use ALMA to survey 89 protoplanetary disks around stars with M * > 0.1 M in the young (1-3 Myr), nearby (150-200 pc) Lupus complex. Our observations cover the 890 µm continuum and the 13 CO and C 18 O 3-2 lines. We use the sub-mm continuum to constrain M dust to a few Martian masses (0.2-0.4 M ⊕ ) and the CO isotopologue lines to constrain M gas to roughly a Jupiter mass (assuming ISM-like [CO]/[H 2 ] abundance). Of 89 sources, we detect 62 in continuum, 36 in 13 CO, and 11 in C 18 O at > 3σ significance. Stacking individually undetected sources limits their average dust mass to 6 Lunar masses (0.03 M ⊕ ), indicating rapid evolution once disk clearing begins. We find a positive correlation between M dust and M * , and present the first evidence for a positive correlation between M gas and M * , which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3× higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have M gas 1 M Jup and gas-to-dust ratios < 100, assuming ISM-like [CO]/[H 2 ] abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.
We present ALMA Band 6 observations of a complete sample of protoplanetary disks in the young (∼1-3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12 CO, 13 CO, and C 18 O J = 2-1 lines. The spatial resolution is ∼ 0. 25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕ . We apply "Keplerian masking" to enhance the signalto-noise ratios of our 12 CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than mm dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission as well as the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc , finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 µm continuum observations, we also calculate the mm spectral index, α mm , for 70 Lupus disks; we find an anti-correlation between α mm and mm flux for low-mass disks (M dust 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.