Cooperation between comammox and anammox bacteria for nitrogen removal has been recently reported in laboratory-scale systems, including synthetic community constructs; however, there are no reports of full-scale municipal wastewater treatment systems with such cooperation. Here, we report intrinsic and extant kinetics as well as genome-resolved community characterization of a full-scale integrated fixed film activated sludge (IFAS) system where comammox and anammox bacteria co-occur and appear to drive nitrogen loss. Intrinsic batch kinetic assays indicated that majority of the aerobic ammonia oxidation was driven by comammox bacteria (1.75 ± 0.08 mg-N/g TS-h) in the attached growth phase, with minimal contribution by ammonia-oxidizing bacteria. Interestingly, a portion of total inorganic nitrogen (∼8%) was consistently lost during these aerobic assays. Aerobic nitrite oxidation assays eliminated the possibility of denitrification as a cause of nitrogen loss, while anaerobic ammonia oxidation assays resulted in rates consistent with anammox stoichiometry. Full-scale experiments at different dissolved oxygen (DO = 2 – 6 mg/L) setpoints indicated persistent nitrogen loss that was partly sensitive to DO concentrations. Genome-resolved metagenomics confirmed the high abundance (relative abundance 6.53 ± 0.34%) of two Brocadia-like anammox populations, while comammox bacteria within the Ca. Nitrospira nitrosa cluster were lower in abundance (0.37 ± 0.03%) and Nitrosomonas-like ammonia oxidizers were even lower (0.12 ± 0.02%). Collectively, our study reports for the first time the co-occurrence and cooperation of comammox and anammox bacteria in a full-scale municipal wastewater treatment system.
Partial denitrification-anammox (PdNA) has a significant application potential for retrofitting plants for more intensified and cost-effective nitrogen removal. Demonstrating the reliability and robustness of PdNA in polishing filters will advance...
Cooperation between comammox and anammox bacteria for nitrogen removal has been recently reported in laboratory-scale systems including synthetic community construct; however, there are no reports of full-scale municipal wastewater treatment systems with such cooperation. Here, we report intrinsic and extant kinetics as well as genome-resolved community characterization of a full-scale integrated fixed film activated sludge (IFAS) system where comammox and anammox bacteria co-occur and appear to drive nitrogen loss. Intrinsic batch kinetic assays indicated that majority of the aerobic ammonia oxidation was driven by comammox bacteria (1.75 ± 0.08 mg-N/g TS-h) in the attached growth phase with minimal contribution by ammonia oxidizing bacteria. Interestingly, a portion of total inorganic nitrogen (~8%) was consistently lost during these aerobic assays. Aerobic nitrite oxidation assays eliminated the possibility of denitrification as a cause of nitrogen loss, while anaerobic ammonia oxidation assays resulted in rates consistent with anammox stoichiometry. Full-scale experiments at different dissolved oxygen (DO = 2-6 mg/L) set points indicated persistent nitrogen loss that was partly sensitive to DO concentrations. Genome-resolved metagenomics confirmed high abundance (relative abundance 6.53 ± 0.34%) of two Brocadia-like anammox populations while comammox bacteria within the Ca. Nitrospira nitrosa cluster were lower in abundance (0.37% ± 0.03%) and Nitrosomonas-like ammonia oxidizers even lower (0.12% ± 0.02%). Collectively, our study reports for the first time the co-occurrence and co-operation of comammox and anammox bacteria in a full-scale municipal wastewater treatment system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.