To meet rising energy demands, power plant operations will expand, influencing the interactions between the water–energy nexus and society. However, a major challenge is integration of social dimensions within electricity generation. To address this, we generate a baseline dataset using US public data (2014–2019) from the Energy Information Administration and US Bureau of Labor Statistics. We identify the rate of energy consumed, CO2, SO2 and NOx emissions generated, and water used per MWh net electricity as well as employee wellbeing per unit MW capacity during electricity generation. Rates of energy consumption (MMBtu/MWh) decreased 4.9%, but water consumption and withdrawal (m3/MWh) both increased 0.93% and 0.31%, respectively. Emissions of CO2, SO2 and NOx decreased 22.64%, 75% and 25% MT/MWh, respectively. Thermoelectric cooling withdrawal and consumption is led by natural gas (50.07%, 38.31%), coal (29.61%, 25.07%), and nuclear energies (13.55%, 18.99%). Electric power generation contributes 0.06 injuries–illnesses/TWh and 0.001 fatalities/TWh, of which fossil fuels contributed 70% and 15%, respectively. Fossil fuels led in average annual employment (0.02 employees/MW) with low cost salaries (USD 0.09/MW) likely due to high collective capacity, which is declining. Estimated rates in this study and framework will aid power industry transition and operational decision makers.
Solar photovoltaics (PV) has emerged as one of the world’s most promising power-generation technologies, and it is essential to assess its applications from the perspective of a material-energy-water (MEW) nexus. We performed a life cycle assessment of the cradle-to-grave MEW for single-crystalline silicon (s-Si) and CdTe PV technologies by assuming both PV systems are recycled at end of life. We found that the MEW network was dominated by energy flows (>95%), while only minor impacts of materials and water flows were observed. Also, these MEW flows have pyramid-like distributions between the three tiers (i.e., primary, secondary/sub-secondary, and tertiary levels), with greater flows at the primary and lower flows at the tertiary levels. A more detailed analysis of materials’ circularity showed that glass layers are the most impactful component of recycling due to their considerable weight in both technologies. Our analysis also emphasized the positive impacts that increased power-conversion efficiency and the use of recycled feedstock have on the PV industry’s circularity rates. We found that a 25% increase in power-conversion efficiency and the use of fully recycled materials in PV panel feedstocks resulted in 91% and 86% material circularity for CdTe and s-Si PV systems, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.