A collaborative study was conducted to evaluate the performance of the VITEK 2 Gram Positive (GP) identification card for use with the VITEK 2 automated microbial identification system. The GP test card is used in the identification of selected Gram positive organisms, including Listeria and Staphylococcus species. The VITEK 2 GP card is based on 43 biochemical tests measuring carbon source utilization, inhibition and resistance, and enzymatic activities. A total of 20 laboratories representing government, industry, and private testing laboratories throughout the United States participated. In this study, 720 Gram-positive inclusivity isolates were analyzed by the GP Identification method. Of the 720 well-characterized isolates, 714 were identified correctly, zero were misidentified, zero were unidentified, and six were not characterized as a Gram-positive organism by the VITEK 2 GP method. Additionally, 120 strains exclusive of Gram-positive organisms were screened by Gram stain. A total of 106 isolates were correctly excluded. Fourteen organisms were incorrectly characterized by Gram stain procedures, thus resulting in improper analysis and misidentification by VITEK GP. The VITEK 2 GP identification method is an acceptable automated method for the rapid identification of selected Gram-positive bacteria.
A collaborative study was conducted to evaluate the performance of the VITEK 2 Gram-negative (GN) Identification card for use with the VITEK 2 automated microbial identification system. The GN test card is used in the identification of fermenting and nonfermenting Gram-negative bacilli, including the select agent organisms Brucella melitensis, Francisella tularensis, Burkholderia mallei, B. pseudomallei, and Yersinia pestis. The VITEK 2 GN card is based on 47 biochemical tests measuring carbon source utilization, inhibition and resistance, and enzymatic activities. A total of 20 laboratories representing government, industry, and private testing facilities throughout the United States participated. In this study, 720 Gram-negative inclusivity isolates were analyzed by the GN Identification method. Of the 720 well-characterized isolates, 707 were identified correctly, 0 were misidentified, 0 were unidentified, and 13 were not characterized as a Gram-negative organism. Additionally, 120 isolates exclusive of fermenting and nonfermenting Gram-negative bacilli were screened by Gram stain. A total of 117 isolates were correctly excluded. Three organisms were incorrectly characterized by Gram stain procedures, resulting in incorrect analysis and misidentification by VITEK 2 GN. The VITEK 2 GN identification method is an acceptable automated method for the rapid identification of Gram-negative bacteria.
The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive samples detected by the 3M MDA Salmonella method versus either the USDA/FSIS-MLG or FDA/BAM methods.
The 3M(™) Molecular Detection Assay (MDA) Salmonella utilizes isothermal amplification of nucleic acid sequences with high specificity, efficiency, rapidity and bioluminescence to detect amplification of Salmonella spp. in food, food-related, and environmental samples after enrichment. A method modification and matrix extension study of the previously approved AOAC Official Method(SM) 2013.09 was conducted, and approval of the modification was received on March 20, 2014. Using an unpaired study design in a multilaboratory collaborative study, the 3M MDA Salmonella method was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) Microbiology Laboratory Guidebook (MLG) 4.05 (2011), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish Products for raw ground beef and the U.S. Food and Drug Administration (FDA)/Bacteriological Analytical Manual (BAM) Chapter 5, Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the LPODs of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive samples detected by the 3M MDA Salmonella method versus either the USDA/FSIS-MLG or FDA/BAM methods.
The VIDAS UP Salmonella (SPT) uses recombinant phage proteins to detect Salmonella species in human and animal food products and production environmental samples after 18-26 h of enrichment. The VIDAS SPT assay is performed with the automated VIDAS or mini-VIDAS instruments. The VIDAS SPT method was compared in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05 (2011) Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products reference method following the current AOAC guidelines. A total of 15 laboratories representing government, academia, and industry throughout the United States participated. One matrix, raw ground beef, was analyzed using two different test portion sizes, 25 and 375 g. Each test portion was artificially contaminated with Salmonella at three inoculation levels, an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFUltest portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1656 unpaired replicate samples were analyzed. Of those unpaired replicates, 476 were presumptive positive by the VIDAS method, with 475 confirmed positive by the traditional confirmation procedures and 476 confirmed positive by an alternative confirmation procedure. There were 411 confirmed positive replicates by the USDA/FSIS-MLG reference method. Statistical analysis was conducted according to the probability of detection (POD). For the low-level 375 g test portions, the following dLPOD values, with 95% confidence intervals, were obtained: 0.01 (-0.12, +0.15) for samples confirmed following the traditional confirmation; 0.02 (-0.18, +0.2) for samples confirmed following traditional confirmation on IBISA and ASAP; and 0.03 (-0.18, +0.24) for samples confirmed following the alternative confirmation on IBISA and ASAP. For the low-level 25 g test portions, the following dLPOD values, with 95% confidence intervals, were obtained: 0.41, (0.32, +0.49) for samples confirmed following the traditional confirmation, the traditional confirmation on IBISA and ASAP, and the alternative confirmation on IBISA and ASAP. With 0.0 within the confidence intervals for the 375 g test portions, there was no statistically significant difference in the number of positive samples detected by the VIDAS SPT method and the USDA/FSIS-MLG method at the 0.05 level. For the 25 g test portions, a statistically significant difference was observed between the VIDAS SPT method and the reference method for the low inoculum level, where the VIDAS SPT method recovered a higher number of positive results than the reference method. It is recommended that the VIDAS SPT method with the optional ASAP and IBISA agar confirmation method be adopted for Official First Action status for the detection of Salmonella in a variety of foods and environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.