While surgery is at the foundation of cancer treatment, its access is limited in low-income countries. Here, we describe development of a low-cost alternative therapy based on intratumoral ethanol injection suitable for resource-limited settings. Although ethanol-based tumor ablation is successful in treating hepatocellular carcinomas, the necessity for multiple treatments, injection of large fluid volumes, and decreased efficacy in treatment of non-capsulated tumors limit its applicability. To address these limitations, we investigated an enhanced ethanol ablation strategy to retain ethanol within the tumor through the addition of ethyl cellulose. This increases the viscosity of injected ethanol and forms an ethanol-based gel-phase upon exposure to the aqueous tumor environment. This technique was first optimized to maximize distribution volume, using tissue-simulating phantoms. Then, chemically-induced epithelial tumors in the hamster cheek pouch were treated. As controls, pure ethanol injections of either four times or one-fourth the tumor volume induced complete regression of 33% and 0% of tumors, respectively. In contrast, ethyl cellulose-ethanol injections of one-fourth the tumor volume induced complete regression in 100% of tumors. These results contribute to proof-of-concept for enhanced ethanol ablation as a novel and effective alternative to surgery for tumor treatment, with relevance to resource-limited settings.
The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 μm diameter) significantly scavenged hydrogen peroxide (H2O2), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically H2O2) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in H2O2, respectively. PPS-MS treatment functionally improved recovery from hind limb ischemia based on ∼15–25% increases in hemoglobin saturation and perfusion in the footpads as well as earlier remodeling of vessels in the proximal limb. In the PTOA model, PPS-MS reduced matrix metalloproteinase (MMP) activity by 30% and mitigated the resultant articular cartilage damage. These results suggest that local delivery of PPS-MS at sites of injury-induced inflammation improves the vascular response to ischemic injury in the setting of chronic hyperglycemia and reduces articular cartilage destruction following joint trauma. These results motivate further exploration of PPS as a stand-alone, locally sustained antioxidant therapy and as a material for microsphere-based, sustained local drug delivery to inflamed tissues at risk of ROS damage.
With the large number of women diagnosed and treated for breast cancer each year, the importance of studying recurrence has become evident due to most deaths from breast cancer resulting from tumor recurrence following therapy. To mitigate this, cellular and molecular pathways used by residual disease prior to recurrence must be studied. An altered metabolism has long been considered a hallmark of cancer, and several recent studies have gone further to report metabolic dysfunction and alterations as key to understanding the underlying behavior of dormant and recurrent cancer cells. Our group has used two probes, 2-[N-(7-nitrobenz-2-oxa-1, 3-diaxol-4-yl) amino]-2-deoxyglucose (2-NBDG) and tetramethyl rhodamine ethyl ester (TMRE), to image glucose uptake and mitochondrial membrane potential, respectively, to report changes in metabolism between primary tumors, regression, residual disease, and after regrowth in genetically engineered mouse (GEM)-derived mammospheres. Imaging revealed unique metabolic phenotypes across the stages of tumor development. Although primary mammospheres overexpressing Her2 maintained increased glucose uptake ("Warburg effect"), after Her2 downregulation, during regression and residual disease, mammospheres appeared to switch to oxidative phosphorylation. Interestingly, in mammospheres where Her2 overexpression was turned back on to model recurrence, glucose uptake was lowest, indicating a potential change in substrate preference following the reactivation of Her2, reeliciting growth. Our findings highlight the importance of imaging metabolic adaptions to gain insight into the fundamental behaviors of residual and recurrent disease. Implications: This study demonstrates these functional fluorescent probes' ability to report metabolic adaptations during primary tumor growth, regression, residual disease, and regrowth in Her2 breast tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.