The synovial fluid (SF) of joints normally functions as a biological lubricant, providing low-friction and low-wear properties to articulating cartilage surfaces through the putative contributions of proteoglycan 4 (PRG4), hyaluronic acid (HA), and surface active phospholipids (SAPL). These lubricants are secreted by chondrocytes in articular cartilage and synoviocytes in synovium, and concentrated in the synovial space by the semi-permeable synovial lining. A deficiency in this lubricating system may contribute to the erosion of articulating cartilage surfaces in conditions of arthritis. A quantitative intercompartmental model was developed to predict in vivo SF lubricant concentration in the human knee joint. The model consists of a SF compartment that (a) is lined by cells of appropriate types, (b) is bound by a semi-permeable membrane, and (c) contains factors that regulate lubricant secretion. Lubricant concentration was predicted with different chemical regulators of chondrocyte and synoviocyte secretion, and also with therapeutic interventions of joint lavage and HA injection. The model predicted steady-state lubricant concentrations that were within physiologically observed ranges, and which were markedly altered with chemical regulation. The model also predicted that when starting from a zero lubricant concentration after joint lavage, PRG4 reaches steady-state concentration ~10-40 times faster than HA. Additionally, analysis of the clearance rate of HA after therapeutic injection into SF predicted that the majority of HA leaves the joint after ~1-2 days. This quantitative intercompartmental model allows integration of biophysical processes to identify both environmental factors and clinical therapies that affect SF lubricant composition in whole joints.
Cytokine regulation of synovial fluid (SF) lubricants, hyaluronan (HA), and proteoglycan 4 (PRG4) is important in health, injury, and disease of synovial joints, and may also provide powerful regulation of lubricant secretion in bioreactors for articulating tissues. This study assessed lubricant secretion rates by human synoviocytes and the molecular weight (MW) of secreted lubricants in response to interleukin (IL)-1b, IL-17, IL-32, transforming growth factor-beta 1 (TGF-b1), and tumor necrosis factor-alpha (TNF-a), applied individually and in all combinations. Lubricant secretion rates were assessed using ELISA and binding assays, and lubricant MW was assessed using gel electrophoresis and Western blotting. HA secretion rates were increased *40-fold by IL-1b, and increased synergistically to *80-fold by the combination of IL-1b þ TGF-b1 or TNF-a þ IL-17. PRG4 secretion rates were increased *80-fold by TGF-b1, and this effect was counterbalanced by IL-1b and TNF-a. HA MW was predominantly <1 MDa for controls and individual cytokine stimulation, but was concentrated at >3 MDa after stimulation by IL-1b þ TGF-b1 þ TNF-a to resemble the distribution in human SF. PRG4 MW was unaffected by cytokines and similar to that in human SF. These results contribute to an understanding of the relationship between SF cytokine and lubricant content in health, injury, and disease, and provide approaches for using cytokines to modulate lubricant secretion rates and MW to help achieve desired lubricant composition of fluid in bioreactors.
These results indicate that mild wear (i.e., wear-line formation) at the articular surface has deleterious functional effects on articular cartilage and represent an early aging-associated degenerative change. The identification and recognition of functional biomechanical consequences of wear-lines are useful for planning and interpreting tensile biomechanical tests in human articular cartilage.
Articular cartilage provides a low-friction surface for joint articulation, with boundary lubrication facilitated by proteoglycan 4 (PRG4), which is secreted by chondrocytes of the superficial zone. Chondrocytes from different zones are phenotypically distinct, and their phenotypes in vitro are influenced by the system in which they are cultured. We hypothesized that culturing cells from the superficial (S) zone in two-dimensional monolayer or three-dimensional alginate would affect their synthesis of PRG4, and that subsequently seeding them atop alginate-recovered cells from the middle/ deep (M) zone in various proportions would result in tissue-engineered constructs with varying levels of PRG4 secretion and matrix accumulation. During monolayer culture, S cells retained their PRG4-secreting phenotype, whereas in alginate culture the percentage of cells secreting PRG4 decreased with time. Constructs formed with increasing percentages of S cells decreased in thickness and matrix accumulation, depending on both the culture conditions before construct formation and the S-cell density. PRG4-secreting cells were localized to the S-cell seeded construct surface, with secretion rates of 0.1-4 pg/cell/day or 0.1-1 pg/cell/day for constructs formed with monolayer-recovered or alginate-recovered S cells, respectively. Tailoring secretion of PRG4 in cartilage constructs may be useful for enhancing low-friction properties at the articular surface, while maintaining other surfaces free of PRG4 for enhancing integration with surrounding tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.