Post-transcriptional modification of RNA is an important determinant of RNA quality control, translational efficiency, RNA-protein interactions, and stress response. This is illustrated by the observation of toxicant-specific changes in the spectrum of tRNA modifications in a stress response mechanism involving selective translation of codon-biased mRNA for critical proteins. To facilitate systems-level studies of RNA modifications, we developed a liquid chromatography-coupled mass spectrometry (LC-MS) technique for the quantitative analysis of modified ribonucleosides in tRNA or other RNA species. The protocol includes tRNA purification by HPLC, enzymatic hydrolysis, reversed-phase HPLC resolution of the ribonucleosides, and identification and quantification of individual ribonucleosides by LC-MS using dynamic multiple reaction monitoring. This approach enables quantification of modified ribonucleosides in several micrograms of tRNA, or other RNA, in a 15-minute LC-MS run. By comparison, traditional methods for detecting modified ribonucleosides are labor and time intensive, require larger RNA quantities, are modification-specific, or require radioactive labeling.
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.
Enterohemorrhagic E. coli (EHEC) is an important subset of Shiga toxin-producing (Stx-producing) E. coli (STEC), pathogens that have been implicated in outbreaks of food-borne illness and can cause intestinal and systemic disease, including severe renal damage. Upon attachment to intestinal epithelium, EHEC generates "attaching and effacing" (AE) lesions characterized by intimate attachment and actin rearrangement upon host cell binding. Stx produced in the gut transverses the intestinal epithelium, causing vascular damage that leads to systemic disease. Models of EHEC infection in conventional mice do not manifest key features of disease, such as AE lesions, intestinal damage, and systemic illness. In order to develop an infection model that better reflects the pathogenesis of this subset of STEC, we constructed an Stx-producing strain of Citrobacter rodentium, a murine AE pathogen that otherwise lacks Stx. Mice infected with Stx-producing C. rodentium developed AE lesions on the intestinal epithelium and Stx-dependent intestinal inflammatory damage. Further, the mice experienced lethal infection characterized by histopathological and functional kidney damage. The development of a murine model that encompasses AE lesion formation and Stx-mediated tissue damage will provide a new platform upon which to identify EHEC alterations of host epithelium that contribute to systemic disease.
Infection of laboratory mice with C. rodentium provides a useful in-vivo model for studying the pathogenesis of infectious gastroenteritis and acute diarrheal illness, and for preclinical evaluation of candidate preventive and therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.