We used single DNA molecule stretching to investigate DNA intercalation by ethidium and three ruthenium complexes. By measuring ligand-induced DNA elongation at different ligand concentrations, we determined the binding constant and site size as a function of force. Both quantities depend strongly on force and, in the limit of zero force, converge to the known bulk solution values, when available. This approach allowed us to distinguish the intercalative mode of ligand binding from other binding modes and allowed characterization of intercalation with binding constants ranging over almost six orders of magnitude, including ligands that do not intercalate under experimentally accessible solution conditions. As ligand concentration increased, the DNA stretching curves saturated at the maximum amount of ligand intercalation. The results showed that the applied force partially relieves normal intercalation constraints. We also characterized the flexibility of intercalator-saturated dsDNA for the first time.
Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.
Potent oxidants which intercalate in DNA serve as tools to probe DNA-mediated electron-transfer reactions. A photoexcited rhodium intercalator, Rh(phi)2DMB3+ (phi = 9,10-phenanthrenequinone diimine and DMB = 4,4'-dimethyl-2,2'-bipyridine), tethered to DNA, promotes both oxidative damage to 5'-GG-3' doublets in DNA and the repair of thymine dimers from a remote site on the DNA duplex. DNA-mediated repair of a thymine dimer lesion by charge transfer from the tethered rhodium intercalator is quantitative, albeit with low photoefficiency, occurs in an intraduplex reaction over long range (36 A), and requires that the intervening bases be paired. When both oxidative reactions, repair and oxidative damage, are monitored on the same duplex, competition is evident; the presence of both a 5'-GG-3' site and the thymine dimer diminished the dimer repair efficiency by 20-40% and decreased damage at the 5'-GG-3' sites 2-fold compared to similar sequences lacking either the guanine doublet or thymine dimer, respectively. In addition to damage at the 5'-G of 5'-GG-3' sites, we also observe oxidation at the 3'-G of the 5'-GT<>TG-3' tetrad only in the presence of thymine dimer. Overall, the yield of repaired thymine strand was at least 10 times higher than the yield of oxidized guanine in the same sequences. While the 5-GG-3' may represent the thermodynamically favored site for oxidative reaction, repair of the thymine dimer appears to be kinetically more favorable. Dipyridophenanzine (dppz) complexes of ruthenium(III), less potent oxidants which intercalate in DNA, oxidize 5'-GG-3' doublets efficiently but cannot trigger the repair of the thymine dimer lesion. Oxidative damage to DNA from a distance, mediated by the DNA base pair stack, can, however, be utilized to probe the disruption in the base stack generated by the thymine dimer. The presence of the dimer does not diminish oxidation by a Ru(III) intercalator at a distal guanine doublet, suggesting that the disruption caused by the dimer does not block charge transfer through the DNA duplex. DNA-mediated electron-transfer reactions of metallointercalators therefore serve to illustrate important aspects of radical migration and its consequence with respect to reactions at a distance through the DNA base pair stack.
Atomic force microscopy (AFM) was used to explore the changes that occur in Escherichia coli ZK1056 prey cells while they are being consumed by the bacterial predator Bdellovibrio bacteriovorus 109J. Invaded prey cells, called bdelloplasts, undergo substantial chemical and physical changes that can be directly probed by AFM. In this work, we probe the elasticity and adhesive properties of uninvaded prey cells and bdelloplasts in a completely native state in dilute aqueous buffer without chemical fixation. Under these conditions, the rounded bdelloplasts were shown to be shorter than uninvaded prey cells. More interestingly, the extension portions of force curves taken on both kinds of cells clearly demonstrate that bdelloplasts are softer than uninvaded prey cells, reflecting a decrease in bdelloplast elasticity after invasion by Bdellovibrio predators. On average, the spring constant of uninvaded E. coli cells (0.23 +/- 0.02 N/m) was 3 times stiffer than that of the bdelloplast (0.064 +/- 0.001 N/m) when measured in a HEPES-metals buffer. The retraction portions of the force curves indicate that compared to uninvaded E. coli cells bdelloplasts adhere to the AFM tip with much larger pull-off forces but over comparable retraction distances. The strength of these adhesion forces decreases with increasing ionic strength, indicating that there is an electrostatic component to the adhesion events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.