Over-expression of the Hsp70 molecular chaperone prevents protein aggregation and ameliorates neurodegenerative disease phenotypes in model systems. We identified an Hsp70 activator, MAL1–271, that reduces α-synuclein aggregation in a Parkinson’s Disease model. We now report that MAL1–271 directly increases the ATPase activity of a eukaryotic Hsp70. Next, twelve MAL1–271 derivatives were synthesized and examined in a refined α-synuclein aggregation model as well as in an assay that monitors maturation of a disease-causing Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutant, which is also linked to Hsp70 function. Compared to the control, MAL1–271 significantly increased the number of cells lacking α-synuclein inclusions and increased the steady-state levels of the CFTR mutant. We also found that a nitrile-containing MAL1–271 analog exhibited similar effects in both assays. None of the derivatives exhibited cellular toxicity at concentrations up to 100µM, nor were cellular stress response pathways induced. These data serve as a gateway for the continued development of a new class of Hsp70 agonists with efficacy in these and potentially other disease models.
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain–domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell–cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation–modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. Significance: Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.