SummaryL4 and L22, proteins of the large ribosomal subunit, contain globular surface domains and elongated 'tentacles' that reach into the core of the large subunit to form part of the lining of the peptide exit tunnel. Mutations in the tentacles of L4 and L22 confer macrolide resistance in a variety of pathogenic and nonpathogenic bacteria. In Escherichia coli, a Lys-to-Glu mutation in L4 and a three-amino-acid deletion in the L22 had been reported. To learn more about the roles of the tentacles in ribosome assembly and function, we isolated additional erythromycin-resistant E. coli mutants. Eight new mutations mapped in L4, all within the tentacle. Two new mutations were identified in L22; one mapped outside the tentacle. Insertion mutations were found in both genes. All of the mutants grew slower than the parent, and they all showed reduced in vivo rates of peptide-chain elongation and increased levels of precursor 23S rRNA. Large insertions in L4 and L22 resulted in very slow growth and accumulation of abnormal ribosomal subunits. Our results highlight the important role of L4 and L22 in ribosome function and assembly, and indicate that a variety of changes in these proteins can mediate macrolide resistance.
Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog of Escherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER.
In Escherichia coli, Rob activates transcription of the SoxRS/MarA/Rob regulon. Previous work revealed that Rob resides in 3-4 immunostainable foci, that dipyridyl and bile salts are inducers of its activity, and that inducers bind to Rob's C-terminal domain (CTD). We propose that sequestration inactivates Rob by blocking its access to the transcriptional machinery and that inducers activate Rob by mediating its dispersal, allowing interaction with RNA polymerase. To test "sequestrationdispersal" as a new mechanism for regulating the activity of transcriptional activators, we fused Rob's CTD to SoxS and used indirect immunofluorescence microscopy to determine the effect of inducers on SoxS-Rob's cellular localization. Unlike native SoxS, which is uniformly distributed throughout the cell, SoxS-Rob is sequestered without inducer, but is rapidly dispersed when cells are treated with inducer. In this manner, Rob's CTD serves as an anti-sigma factor in regulating the co-sigma factor-like activity of SoxS when fused to it. Rob's CTD also protects its N-terminus from Lon protease, since Lon's normally rapid degradation of SoxS is blocked in the chimera. Accordingly, Rob's CTD has novel regulatory properties that can be bestowed on another E. coli protein.
L4 and L22, proteins of the large ribosomal subunit, contain globular surface domains and elongated "tentacles" that reach into the core of the large subunit to form part of the lining of the peptide exit tunnel. To learn more about the roles of the tentacles of L4 and L22 in ribosomal assembly and function, we isolated and characterized erythromycin resistant mutants in E. coli. All of the mutants grew slower than the parent and all showed reduced in vivo rates of peptide elongation and increased levels of precursor 23S rRNA. Sucrose gradient sedimentation analysis also showed that large insertions in L4 and L22 result in accumulation of abnormal ribosomal subunits. In addition, structural studies using chemical modification followed by primer extension reveal changes in rRNA structure due to large insertion mutations in L4 and L22, particularly at A2450 and A2451, key nucleotides in the peptidyl transferease center. Further studies are underway to correlate structural changes in 23S rRNA with slower peptide elongation rates observed in mutant strains. These results highlight the important role of L4 and L22 in ribosome structure, function and assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.