Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.
SummaryFireflies are among the best-studied of the bioluminescent organisms. Despite longterm interest in the biochemistry, neurobiology, and evolution of firefly flash signals and the widespread biotechnological applications of firefly luciferase, only a limited set of genes related to this complex trait have been described. To investigate the genetic basis of firefly bioluminescence, we generated a high-quality reference genome for the Big Dipper firefly Photinus pyralis, from which the first laboratory luciferase was cloned, using long-read (PacBio), short-read (Illumina), and Hi-C sequencing technologies. To facilitate comparative genomics, we also generated short-read genome assemblies for a Japanese firefly Aquatica lateralis and a bioluminescent click beetle, Ignelater luminosus. Analyses of these genomic datasets supports at least two independent gains of luminescence in beetles, and provides new insights into the evolution of beetle bioluminescence and chemical defenses that likely co-evolved over their 100 million years of evolution.
How genetic variation is generated and maintained remains a central question in evolutionary biology. When presented with a complex environment, microbes can take advantage of genetic variation to exploit new niches. Here we present a massively parallel experiment where WT and repair-deficient () populations have evolved over 3 y in a spatially heterogeneous and nutritionally complex environment. Metagenomic sequencing revealed that these initially isogenic populations evolved and maintained stable subpopulation structure in just 10 mL of medium for up to 10,000 generations, consisting of up to five major haplotypes with many minor haplotypes. We characterized the genomic, transcriptomic, exometabolomic, and phenotypic differences between clonal isolates, revealing subpopulation structure driven primarily by spatial segregation followed by differential utilization of nutrients. In addition to genes regulating the import and catabolism of nutrients, major polymorphisms of note included insertion elements transposing into (regulator of the type I fimbriae) and upstream of (global regulator of environmental-change and stress-response genes), both known to regulate biofilm formation. Interestingly, these genes have also been identified as critical to colonization in uropathogenic infections. Our findings illustrate the complexity that can arise and persist even in small cultures, raising the possibility that infections may often be promoted by an evolving and complex pathogen population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.