Hybrid generation systems have been extensively modeled as a first step toward the development of automatic controls for the system. In most cases, it is impossible to validate mathematical models against real hardware because only a handful of hardware systems exist in the world. Data taken from the existing hardware has demonstrated significant nonlinearity, complex coupling between controlled variables, and sometimes non-intuitive behavior. This work exploits the capability of the HyPer hardware test bed at the National Energy Technology Laboratory (NETL) to generate data from a real recuperated gas turbine coupled with hardware simulations of a fuel cell cathode and appropriate ancillary equipment. Prior work has characterized the system only over a limited range of its operating envelope, due to the inability to manipulate multiple control inputs simultaneously. The work presented here fills the gaps using data from a 34 factorial experiment to generate quasi-continuous response surfaces describing the operating state space of the HyPer system. Polynomial correlation functions have been fitted to the data with excellent agreement. Relationships between the control inputs and critical state variables such as cathode mass flow, cathode temperature, turbine inlet and exhaust temperatures and other key system parameters are presented.
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valves and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology Laboratory (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) v
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.