Large-scale commercial bioprocesses that manufacture biopharmaceutical products such as monoclonal antibodies generally involve multiple bioreactors operated in parallel. Spectra recorded during in situ monitoring of multiple bioreactors by multiplexed fiber-optic spectroscopies contain not only spectral information of the chemical constituents but also contributions resulting from differences in the optical properties of the probes. Spectra with variations induced by probe differences cannot be efficiently modeled by the commonly used multivariate linear calibration models or effectively removed by popular empirical preprocessing methods. In this study, for the first time, a calibration model is proposed for the analysis of complex spectral data sets arising from multiplexed probes. In the proposed calibration model, the spectral variations introduced by probe differences are explicitly modeled by introducing a multiplicative parameter for each optical probe, and then their detrimental effects are effectively mitigated through a "dual calibration" strategy. The performance of the proposed multiplex calibration model has been tested on two multiplexed spectral data sets (i.e., MIR data of ternary mixtures and NIR data of bioprocesses). Experimental results suggest that the proposed calibration model can effectively mitigate the detrimental effects of probe differences and hence provide much more accurate predictions than commonly used multivariate linear calibration models (such as PLS) with and without empirical data preprocessing methods such as orthogonal signal correction, standard normal variate, or multiplicative signal correction.
Spectral space transformation can be used to maintain the performance of calibration models if instrument changes arise in mid-infrared process analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.