To restore native fish populations, fisheries programs often depend on active removal of aquatic invasive species. Chemical removal can be an effective method of eliminating aquatic invasive species, but chemicals can induce mortality in nontarget organisms and persist in the environment. Carbon dioxide (CO2) is an emerging alternative to traditional chemical control agents because it has been demonstrated to be toxic to fish, but is naturally occurring and readily neutralized. In addition, CO2 is a commercially available gas, is highly soluble, and has high absorption efficiency. When these characteristics are paired with advances in modern, large‐scale gas delivery technologies, opportunities to use CO2 in natural or artificial (e.g., canals) waters to manage fish become increasingly feasible. Our objective is to describe the history of CO2 use in fisheries and outline potential future applications of CO2 to suppress and manipulate aquatic species in field and aquaculture settings.
This review examines the ecological, economical, and public health significance of chironomids and provides examples of chironomid invasions via international shipping and the subsequent local and regional impacts. Dispersal and adaptation mechanisms as facilitators of chironomid invasions are presented, and control methods are discussed. Impacts ranged from increased nuisance occurrences to agricultural disruption. Anthropogenic activities including pollution-related decimation of aquatic benthic communities might allow introduction of invasive chironomids. Chironomids can inhabit many environments, including eutrophic lakes and wastewater treatment areas, and may accumulate contaminants in high concentrations. Health concerns include the association of chironomid egg masses with Vibrio cholerae, roles of chironomids as vectors for avian botulism, and effects of chironomid chemicals as human allergens. Therefore, the presence of new chironomid species in an environment may present threats to public health and local ecosystems.
Reconstructing historical colonization pathways of an invasive species is critical for uncovering factors that determine invasion success and for designing management strategies. The American bullfrog (Lithobates catesbeianus) is endemic to eastern North America, but now has a global distribution and is considered to be one of the worst invaders in the world. In Montana, several introduced populations have been reported, but little is known of their sources and vectors of introduction and secondary spread. We evaluated the genetic composition of introduced populations at local (Yellowstone River floodplain) and regional (Montana and Wyoming) scales in contrast to native range populations. Our objectives were to (1) estimate the number of introductions, (2) identify probable native sources, (3) evaluate genetic variation relative to sources, and (4) characterize properties of local‐ and regional‐scale spread. We sequenced 937 bp of the mitochondrial cytochrome b locus in 395 tadpoles collected along 100 km of the Yellowstone River, from three additional sites in MT and a proximate site in WY. Pairwise ΦST revealed high divergence among nonnative populations, suggesting at least four independent introductions into MT from diverse sources. Three cyt b haplotypes were identical to native haplotypes distributed across the Midwest and Great Lakes regions, and AMOVA confirmed the western native region as a likely source. While haplotype (H d = 0.69) and nucleotide diversity (π = 0.005) were low in introduced bullfrogs, the levels of diversity did not differ significantly from source populations. In the Yellowstone, two identified haplotypes implied few introduction vectors and a significant relationship between genetic and river distance was found. Evidence for multiple invasions and lack of subsequent regional spread emphasizes the importance of enforcing legislation prohibiting bullfrog importation and the need for continuing public education to prevent transport of bullfrogs in MT. More broadly, this study demonstrates how genetic approaches can reveal key properties of a biological invasion to inform management strategies.
Livestock presence in proximity to forest streams has been shown to contribute pathogenic bacteria in excess of water quality standards established to protect human health. However, the degree to which livestock fecal contamination in streams on national forest lands is either a limited or a potentially widespread occurrence is still debated. This study provides additional insight into the matter. We analyzed water in small streams near known cattle grazing areas within the Stanislaus National Forest in the Sierra Nevada, California from 2012 to 2016. Fourteen stream sites were sampled before and after cattle were released onto the forest (four of these sites were sampled across multiple years) to compare indicator bacteria concentrations (fecal coliform-FC, Escherichia coli-EC) to standards established for recreational contact for surface waters. One control site was also sampled. There were 194 water quality violations of either state or federal regulatory standards for recreational contact, all of which occurred once cattle were on the forest. Mean (max) FC and EC concentrations were on orders of magnitude higher after cattle were released onto the forest [FC 1307 (30,000) and EC 1033 (17,000) MPN/100 mL] than during the time period before cattle were on the forest [FC 19 (220) and EC 17 (220) MPN/100 mL; FC, F 1,210 = 105, p < 0.001; EC, F 1,210 = 85.5, p < 0.001]. In addition, the presence of cattle, visual evidence of recent cattle-related disturbances, and sampling week were important predictor variables of FC and EC. These findings support the link between cattle presence and increased levels of stream pathogenic bacteria, and also demonstrate that stream pathogenic bacteria pollution occurs widely across the forest. This research indicates the need to consider alternative range management practices to better protect water quality and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.