We have synthesized and characterized the new cadmium chelating agent potassium bis(2-hydroxyethyl)aminoethyldithiocarbonate hemihydrate, K[bhexan] x 0.5H2O (2), that is structurally related to the known effective in vivo cadmium chelating agent potassium bis(2-hydroxyethyl)dithiocarbamate, K[bhedtc] (1). The corresponding cadmium complex of 2 differs from di(bis(2-hydroxyethyl)dithiocarbamato)cadmium(II), Cd(bhedtc)2 (3), in that the insoluble compound exhibits an elemental composition consistent with a cadmium:ligand ratio of 2:1. The cytotoxicity of the 1-3 was investigated using the human osteoblast-like cell line, Saos-2. Compounds 1 or 2 did not affect cell adherence or cell viability in the 100-500 microM concentration range studied, whereas 3 resulted in a concentration-dependent increase in loss of cell adherence and decrease in cell viability. Overall, the results of the loss of cell adherence, trypan blue exclusion and MTT assays showed that administration of 3 (cadmium complex of 1) resulted in cytotoxicity lower than that of cadmium chloride, but higher than that of the chelator 1 alone. The effect of simultaneous addition of cadmium chloride and 1 or 2 on cell viability was also assessed using the MTT assay. For the 100 microM cadmium chloride experiments, cell viability comparable to control cells was achieved for both 1 and 2 in the 100-500 microM concentration range studied. Cell viability comparable to control cells was achieved for 1 but not 2 in the 100-500 microM concentration range studied for the 200 microM cadmium chloride experiments. Thus 1 appears more effective than 2 in the ability to mediate the cytotoxic effects of cadmium in vitro upon concomitant administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.