No abstract
Vulnerability assessments combine quantitative and qualitative evaluations of the exposure, sensitivity, and adaptive capacity of species or natural communities to current and future threats. When combined with the economic, ecological or evolutionary value of the species, vulnerability assessments quantify the relative risk to regional species and natural communities and can enable informed prioritization of conservation efforts. Vulnerability assessments are common practice in conservation biology, including the potential impacts of future climate scenarios. However, geographic variation in scenarios and vulnerabilities is rarely quantified. This gap is particularly limiting for informing ecosystem management given that conservation practices typically vary by sociopolitical boundaries rather than by ecological boundaries. To support prioritization of conservation actions across a range of spatial scales, we conducted the Gulf Coast Vulnerability Assessment (GCVA) for four natural communities and eleven focal species around the Gulf of Mexico based on current and future threats from climate change and land-use practices out to 2060. We used the Standardized Index of Vulnerability and Value (SIVVA) tool to assess both natural community and species vulnerabilities. We observed greater variation across ecologically delineated subregions within the Gulf Coast of the U.S. than across climate scenarios. This novel finding suggests that future vulnerability assessments incorporate regional variation and that conservation prioritization may vary across ecological subregions. Across subregions and climate scenarios the most prominent threats were legacy effects, primarily from habitat loss and degradation, that compromised the adaptive capacity of species and natural communities. The second most important threats were future threats from sea-level rise. Our results suggest that the substantial threats species and natural communities face from climate change and sea-level rise would be within their adaptive capacity were it not for historic habitat loss, fragmentation, and degradation.
Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef‐derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.