Despite its scalability and CMOS process compatibility, the limited endurance and sub-optimal stress response of ferroelectric Zr-substituted hafnia [(Hf,Zr)O2] have been one of the key impediments toward its integration into practical device and technology applications. Here, using electrical measurements complemented by photoluminescence spectroscopy, we investigate the underlying mechanisms behind this behavior in 10 nm thick W/Hf0.5Zr0.5O2/W capacitors. Analyzing the evolution of leakage current with stress cycles and the spectroscopic response of the stress-induced leakage current, we attribute the behavior to defect levels, which lie at 0.6 eV from the conduction band edge of the ferroelectric. Photoluminescence spectroscopy, in turn, further corroborates the defect level's position within the bandgap while enabling its attribution to the presence of oxygen vacancies. This work helps to identify oxygen vacancies as the key factor responsible for the degraded endurance and stress response in (Hf,Zr)O2 and subsequently motivates the exploration of methods to reduce the oxygen vacancy concentrations without destabilizing the ferroelectric orthorhombic phase.
Non‐volatile memory device structures such as ferroelectric random‐access memory and ferroelectric tunnel junctions employ switchable spontaneous polarization to hold binary states. These devices can potentially benefit from the imposition of spontaneous internal biases and their resulting effect on the polarization properties of the ferroelectric (or field‐induced ferroelectric/antiferroelectric) layer. While HfO2‐based thin films are ideal candidates for implementation into these devices due to their scalability and silicon compatibility, the phase purity of these oxides is sensitive to the selection of electrode material, preventing incorporation of asymmetric electrode layers into such structures. Within this work, electrode replacement following post‐metallization anneal processing is introduced as a route to achieve ferroelectric and field‐induced ferroelectric HfxZr1−xO2 (HZO) thin films with electrode‐independent phase constitutions. The effects of this process and the corresponding internal biases imposed across the HZO layers due to asymmetric work functions are investigated. It is shown that internal biases vary in magnitude in accordance with prediction based on the work functions of the replaced electrode layers and affect remanent polarization magnitudes. Accordingly, electrode replacement presents a processing route that can readily produce HZO films with spontaneous internal biases and electrode‐independent phase constitutions, facilitating implementation of these ferroelectrics into the next generation device structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.