We have developed a device entitled the 'Tissue Elastometer' (TE) for evaluating the Young's modulus of soft tissues. Soft tissue specimens are compressed between the object plate of an electronic balance and a linearly actuated indenter with a small rounded tip. The hardware of the device was designed such that a deformation model for semi-infinite media is applicable for calculating the Young's modulus of test specimens from their collected force-displacement data.Force-elongation measurements were performed on long strips of cured silicone mixtures to produce calibrated, tissue-mimicking test samples for the TE in a Young's modulus range of 10-400 kPa. When tested with the TE, the Young's moduli of the silicone samples demonstrated accuracy to within 1-10% of their calibrated values. Testing on excised tissue samples (fresh store-bought poultry breast; bovine liver, kidneys, hind shanks; porcine) was also performed, and a repeatability of elasticity measurements was demonstrated in the range of 8-14%. Results indicate that the TE can be effectively used in laboratory and clinical environments to evaluate the elasticity modulus of tissues.
We have developed a solid mechanics model of nearly incompressible, viscoelastic soft tissue for finite element analysis (FEA) in MATLAB 7.2. Newmark’s method was used to solve the finite element equations of motion for our model. The solution to our dynamic problem was validated with a transient dynamic analysis in ANSYS 10.0. We further demonstrated that our MATLAB FEA qualitatively agrees with those results observed with acoustic radiation force methods on soft tissues and tissue-mimicking materials. We showed that changes in Young’s modulus and the damping coefficient affect the displacement amplitude and phase shift of the response data in the same manner: An increase in Young’s modulus or damping coefficient decreases both the displacement amplitude and response lag. Future work on this project will involve frequency analysis on response data and studying the initial transient region to help uncouple the effects of Young’s modulus and damping coefficient on response characteristics. This will get us one step closer to being able to explicitly determine Young’s modulus and the damping coefficient from the temporal response data of acoustic radiation force methods, which is the ultimate goal of our project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.