Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.
Glutamatergic synapses form the vast majority of connections within neuronal circuits but how these subcellular structures are molecularly organized within the mammalian brain is poorly understood. Conventional electron microscopy using chemically fixed, metal-stained tissue has identified a proteinaceous, membrane-associated thickening called the postsynaptic density (PSD). Here, we combined mouse genetics and cryo-electron tomography to determine the 3D molecular architecture of fresh synapses in the adult forebrain. The native glutamatergic synapse lacked a PSD. Instead, a concentrated synaptoplasm consisting of cytoskeletal elements, macromolecular complexes and membrane-bound organelles extended throughout the pre- and post-synaptic compartments. Snapshots of active processes gave insights into the architectural basis for synaptic remodeling. Clusters of 4-60 ionotropic glutamate receptors were positioned inside and outside the synaptic cleft. Together, these information-rich tomographic maps present a detailed molecular framework for the coordinated activity within mammalian brain synapses.
Amyloid plaques composed of Aβ fibrils are a hallmark of Alzheimer’s disease (AD). However, the molecular architecture of amyloid plaques in the context of fresh mammalian brain tissue is unknown. Here, using cryogenic correlated light and electron tomography we report the in situ molecular architecture of Aβ fibrils in the AppNL-G-F familial AD mouse model containing the Arctic mutation and an atomic model of ex vivo purified Arctic Aβ fibrils. We show that in-tissue Aβ fibrils are arranged in a lattice or parallel bundles, and are interdigitated by subcellular compartments, extracellular vesicles, extracellular droplets and extracellular multilamellar bodies. The Arctic Aβ fibril differs significantly from an earlier AppNL-F fibril structure, indicating a striking effect of the Arctic mutation. These structural data also revealed an ensemble of additional fibrillar species, including thin protofilament-like rods and branched fibrils. Together, these results provide a structural model for the dense network architecture that characterises β-amyloid plaque pathology.
Experimental workflows combining mouse genetics, cryogenic correlated light and electron microscopy and cryo-electron tomography to bridge length scales from the whole organism to molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.