Highlights d Chemical proteomics identifies cysteine reactivity changes in activated T cells d Chemical proteomics maps ligandable cysteines in diverse immune-relevant proteins d Cysteine-directed electrophilic compounds suppress T cells by distinct mechanisms d Electrophile-cysteine interactions promote the degradation of immune proteins
Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identify the most sensitive sites in the proteome to electrophilic modification requires more quantitative methods. Here, we describe a competitive activity-based profiling method for quantifying the reactivity of electrophilic compounds against 1000+ cysteines in parallel in the human proteome. Using this approach, we identify a select set of proteins that constitute “hot spots” for modification by various lipid-derived electrophiles, including the oxidative stress product 4-hydroxynonenal (HNE). We show that one of these proteins, ZAK kinase, is labeled by HNE on a conserved, active site-proximal cysteine, resulting in enzyme inhibition to create a negative feedback mechanism that can suppress the activation of JNK pathways by oxidative stress.
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) that is thought to be caused by a combination of genetic and environmental factors. To date, considerable evidence has associated Epstein-Barr virus (EBV) infection with disease development. However, it remains controversial whether EBV infects multiple sclerosis brain and contributes directly to CNS immunopathology. To assess whether EBV infection is a characteristic feature of multiple sclerosis brain, a large cohort of multiple sclerosis specimens containing white matter lesions (nine adult and three paediatric cases) with a heterogeneous B cell infiltrate and a second cohort of multiple sclerosis specimens (12 cases) that included B cell infiltration within the meninges and parenchymal B cell aggregates, were examined for EBV infection using multiple methodologies including in situ hybridization, immunohistochemistry and two independent real-time polymerase chain reaction (PCR) methodologies that detect genomic EBV or the abundant EBV encoded RNA (EBER) 1, respectively. We report that EBV could not be detected in any of the multiple sclerosis specimens containing white matter lesions by any of the methods employed, yet EBV was readily detectable in multiple Epstein-Barr virus-positive control tissues including several CNS lymphomas. Furthermore, EBV was not detected in our second cohort of multiple sclerosis specimens by in situ hybridization. However, our real-time PCR methodologies, which were capable of detecting very few EBV infected cells, detected EBV at low levels in only 2 of the 12 multiple sclerosis meningeal specimens examined. Our finding that CNS EBV infection was rare in multiple sclerosis brain indicates that EBV infection is unlikely to contribute directly to multiple sclerosis brain pathology in the vast majority of cases.
Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear, but may involve the covalent modification of proteins or DMF serving as a pro-drug that is converted to monomethyl fumarate (MMF). Here, we found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF-sensitivity of > 2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase C θ (PKCθ). Furthermore, DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.
It is proposed that facial selectivity in the Jacobsen epoxidation is determined by electrostatic and steric factors with a two-step pathway involving a carbocationic intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.