Protein export pathways are important for bacterial physiology among pathogens and non-pathogens alike. This includes the Twin-Arginine Translocation (Tat) pathway, which transports fully folded proteins across the bacterial cytoplasmic membrane. Some Tat substrates are virulence factors, while others are important for cellular processes like peptidoglycan remodeling. Some bacteria encode more than one copy of each Tat component, including the Gram-negative soil isolate Acinetobacter baylyi. One of these Tat pathways is essential for growth, while the other is not. We constructed a loss-of-function mutation to disrupt the non-essential tatC2 gene and assessed its contribution to cell growth under different environmental conditions. While the tatC2 mutant grew well under standard laboratory conditions, it displayed a growth defect and an aberrant cellular morphology when subjected to high temperature stress including an aberrant cellular morphology. Furthermore, increased sensitivities to detergent suggested a compromised cell envelope. Lastly, using an in vitro co-culture system, we demonstrate that the non-essential Tat pathway provides a growth advantage. The findings of this study establish the importance of the non-essential Tat pathway for optimal growth of A. baylyi in stressful environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.