Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease.
Multiple sclerosis (MS) is characterized by episodes of inflammatory demyelination with progressive failure of remyelination. Prior studies using murine models of MS indicate that remyelination within the adult central nervous system (CNS) requires the expression and activity of TNFR2 and CXCR4 by oligodendrocyte progenitor cells (OPCs), promoting their proliferation and differentiation into mature oligodendrocytes. Here, we extend these studies by examining the role of TNFR2 in the expression of the CXCR4 ligand, CXCL12, within the corpus callosum (CC) during cuprizone (CPZ) intoxication and by demonstrating that lentiviral-mediated gene delivery of CXCL12 to the demyelinated CC improves OPC proliferation and myelin expression during remyelination. Activated astrocytes and microglia express both TNFR1 and TNFR2 within the demyelinated CC. However, CPZ intoxicated TNFR2−/− mice exhibit loss of up-regulation of CXCL12 in astrocytes with concomitant decreases in numbers of CXCR4+ NG2+ OPCs within the CC. While CXCR4 antagonism does not affect OPC migration from subventricular zones into the CC, it decreases their proliferation and differentiation within the CC. Stereotactic delivery of lentivirus expressing CXCL12 protein into the CC of acutely demyelinated TNFR2−/− mice increases OPC proliferation and expression of myelin. In contrast, chronically demyelinated wild-type mice, which exhibit significant loss of astrocytes and OPCs, are unable to be rescued via CXCL12 lentivirus alone but instead required engraftment of CXCL12-expressing astrocytes for increased myelin expression. Our results show that TNFR2 activation induces CXCL12 expression in the demyelinated CC via autocrine signaling specifically within astrocytes, which promotes OPC proliferation and differentiation. In addition, gene delivery of critical pro-myelinating proteins might be a feasible approach for the treatment of remyelination failure in MS.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-1034-0) contains supplementary material, which is available to authorized users.
Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1β in astrocytes and MHCII and IL-1β in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1β, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline.
Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15-30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1β, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1β and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1-7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications.
The vulnerability of oligodendrocytes to ischemic injury may contribute to functional loss in diseases of central white matter. Immunocytochemical methods to identify oligodendrocyte injury in experimental models rely on epitope availability, and fail to discriminate structural changes in oligodendrocyte morphology. We previously described the use of a lentiviral vector (LV) carrying eGFP under the myelin basic protein (MBP) promoter for selective visualization of oligodendrocyte cell bodies and processes. In this study, we used LV-MBP-eGFP to label oligodendrocytes in rat cerebral white matter prior to transient focal cerebral ischemia, and examined oligodendrocyte injury 24 hours, 48 hours and one week post-reperfusion by quantifying cell survival and assaying the integrity of myelin processes. There was progressive loss of GFP+ oligodendrocytes in ischemic white matter at 24 and 48 hrs. Surviving GFP+ cells had non-pyknotic nuclear morphology and were TUNEL-negative, but there was marked fragmentation of myelin processes as early as 24 hours after stroke. One week after stroke, we observed a restoration of GFP+ oligodendrocytes in ischemic white matter, reflected both by cell counts and by structural integrity of myelin processes. Proliferating cells were not the main source of GFP+ oligodendrocytes, as revealed by BrdU incorporation. These observations identify novel transient structural changes in oligodendrocyte cell bodies and myelinating processes, which may have consequences for white matter function after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.