Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.