The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the rRNA structure so that later proteins may join the complex is poorly understood. Here we use single molecule fluorescence resonance energy transfer (smFRET) to observe real-time encounters between ribosomal protein S4 and the 16S 5′ domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free energy path to protein-RNA recognition. Three-color FRET and molecular dynamics (MD) simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. This protein-guided dynamics offers an alternative explanation for induced fit in RNA-protein complexes.
Ribosomal protein S4 binds and stabilizes a five-helix junction in the 5’ domain of the 16S rRNA, and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and the five-helix junction reorganize their structures. We show that labile S4 complexes rearrange to stable complexes within a few minutes at 42°C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show this structural change depends only on 16S residues within the S4 binding site. SHAPE chemical-probing experiments showed that S4 strongly stabilizes the five-helix junction and helix 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in helix 16 that makes specific contacts with the S4 N-terminal extension, and a right angle motif between helices 3, 4 and 18, require a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of helix 3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.