The mainstream smoke yields of five volatile organic compounds (VOCs) were determined from 60 commercial U.S. little cigar products under ISO 3308 and Canadian Intense (CI) smoking regimens on linear smoking machines using a gas sampling bag collection. The five VOCs, 1,3-butadiene, acrylonitrile, benzene, isoprene, and toluene were analyzed using an automated GC/MS analytical method validated for measuring various VOCs in mainstream smoke. The VOCs range in amounts from micrograms to milligrams per little cigar. VOC deliveries vary considerably among the little cigar products under the ISO smoking regimen primarily due to varying filter ventilation. Under the CI smoking regimen where filter ventilation is blocked, the delivery range narrows, although individual and total VOC yields are approximately 2 fold higher than those under the ISO smoking regimen. Correlation analysis reveals strong associations between acrylonitrile and 1,3-butadiene or toluene under the ISO smoking regimen. Compared to cigarettes, little cigars delivered substantially higher VOC mainstream smoke yields under both ISO and CI smoking regimens. Moreover, little cigar smoke also contains higher VOCs than cigarette smoke when adjusted for mass of tobacco.
A quantitative method was developed to measure four harmful carbonyls (acetaldehyde, acrolein, crotonaldehyde, and formaldehyde) in aerosol generated from e-cigarette, or vaping, products (EVPs). The method uses a commercially available sorbent bed treated with a derivatization solution to trap and stabilize reactive carbonyls in aerosol emissions from EVPs to reduce reactive analyte losses and improve quantification. Analytes were extracted from the sorbent material using acetonitrile and analyzed via high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). The method was applied to aerosols generated from products obtained from case patients with EVP use-associated lung injury (EVALI). The method accuracy ranged from 93.6 to 105% in the solvent and 99.0 to 112% in the matrix. Limits of detection (LODs) were in the low nanogram range at 0.735–2.10 ng for all analytes, except formaldehyde at 14.7 ng. Intermediate precision, as determined from the replicate measurements of quality-control (QC) samples, showed a relative standard deviation (RSD) of less than 20% for all analytes. The EVALI case-related products delivered aerosol containing the following ranges of carbonyls: acetaldehyde (0.0856–5.59 μg), acrolein (0.00646–1.05 μg), crotonaldehyde (0.00168–0.108 μg), and formaldehyde (0.0533–12.6 μg). At least one carbonyl analyte was detected in every product. Carbonyl deliveries from EVALI-associated products of all types are consistent with the previously published results for e-cigarettes, and levels are lower than those observed in smoke from combustible cigarettes. This method is rugged, has high throughput, and is well suited for quantifying four harmful carbonyls in aerosol emissions produced by a broad spectrum of devices/solvents, ranging from e-cigarette containing polar solvents to vaping products containing nonpolar solvents.
Mainstream smoke yields of hydrogen cyanide (HCN) and three aromatic amines, 1-aminonaphthalene, 2aminonaphthalene, and 4-aminobiphenyl, from 60 little cigar brands currently on the US market were measured for both International Organization for Standardization (ISO) and Canadian Intense (CI) smoking regimens. The smoke yields are compared with those from 50 cigarette products measured by Counts et al. of Philip Morris USA (PMUSA) in 2005 [Counts et al. Regul. Toxicol. Pharmacol. 2005 41, 185−227] and 50 cigarette products measured by the Centers for Disease Control and Prevention (CDC) in cooperation with the Food and Drug Administration (FDA) in 2012 [Tynan et al. Consumption of Cigarettes and Combustible Tobacco: United States, 2000−2011. In Morbidity and Mortality Weekly Report; Centers for Disease Control and Prevention, 2012; 565−580].For the little cigars, the average HCN yield with the ISO smoking regimen is 335 μg/cigar (range: 77−809 μg/cigar), which is 332% higher than the average of 50 PMUSA 2005 cigarettes and 243% higher than the average of 50 CDC/FDA 2012 cigarettes. For the CI smoking regimen, the average HCN yield is 619 μg/cigar (range: 464−1045 μg/cigar), which is 70.5% higher than the average of 50 PMUSA 2005 cigarettes and 69% higher than the average of the 50 CDC/FDA 2012 cigarettes. For aromatic amines, the average ISO smoking regimen smoke yields are 36.6 ng/cigar (range: 15.9−70.6 ng/cigar) for 1-aminonaphthalene, 24.6 ng/cigar (range: 12.3−36.7 ng/ cigar) for 2-aminonaphthalene, and 5.6 ng/cigar (range: 2.3−17.2 ng/cigar) for 4-aminobiphenyl. The average ISO yields of aromatic amines from little cigars are 141% to 210% higher compared to the average yields of 50 PMUSA cigarettes. The average CI smoke regimen yields are 73.0 ng/cigar (range: 32.1−112.2 ng/cigar) for 1-aminonaphthalene, 45.2 ng/cigar (range: 24.6−74.8 ng/ cigar) for 2-aminonaphthalene, and 12.7 ng/cigar (range: 5.5−37.5 ng/cigar) for 4-aminobiphenyl. The average CI aromatic amine yields are 143% to 220% higher compared to the average yields of 50 PMUSA cigarettes, almost identical to the relative yields under the ISO smoking regimen. Both HCN and aromatic amine yields are 1.5× to 3× higher for the tested little cigars than for the conventional cigarettes; however, there are notable differences in the relationships of these yields to certain product characteristics, such as weight, ventilation, and tobacco type. The higher smoke yields of these compounds from little cigars indicates that cigar smokers may be at risk of a higher exposure to HCN and aromatic amines on a per stick basis and thus increased health concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.