Two genetic loci control the vernalization response in winter cereals; VRN1, which encodes an AP1-like MADS-box transcription factor, and VRN2, which has been mapped to a chromosome region containing ZCCT zinc finger transcription factor genes. We examined whether daylength regulates expression of HvVRN1 and HvVRN2. In a vernalization-responsive winter barley (Hordeum vulgare), expression of HvVRN1 is regulated by vernalization and by development, but not by daylength. Daylength affected HvVRN1 expression in only one of six vernalization-insensitive spring barleys examined and so cannot be a general feature of regulation of this gene. In contrast, daylength is the major determinant of expression levels of two ZCCT genes found at the barley VRN2 locus, HvZCCTa and HvZCCTb. In winter barley, high levels of HvZCCTa and HvZCCTb expression were detected only when plants were grown in long days. During vernalization in long-day conditions, HvVRN1 is induced and expression of HvZCCTb is repressed. During vernalization under short days, induction of HvVRN1 occurs without changes in HvZCCTa and HvZCCTb expression. Analysis of HvZCCTa and HvZCCTb expression levels in a doubled haploid population segregating for different vernalization and daylength requirements showed that HvVRN1 genotype determines HvZCCTa and HvZCCTb expression levels. We conclude that the vernalization response is mediated through HvVRN1, whereas HvZCCTa and HvZCCTb respond to daylength cues to repress flowering under long days in nonvernalized plants.
Interactions between flowering time genes were examined in a doubled haploid barley (Hordeum vulgare) population segregating for H. vulgare VERNALIZATION1 (HvVRN1), HvVRN2, and PHOTOPERIOD1 (PPD-H1). A deletion allele of HvVRN2 was associated with rapid inflorescence initiation and early flowering, but only in lines with an active allele of PPD-H1. In these lines, the floral promoter FLOWERING LOCUS T (HvFT1) was expressed at high levels without vernalization, and this preceded induction of HvVRN1. Lines with the deletion allele of HvVRN2 and the inactive ppd-H1 allele did not undergo rapid inflorescence initiation and were late flowering. These data suggest that HvVRN2 counteracts PPD-H1 to prevent flowering prior to vernalization. An allele of HvVRN1 that is expressed at high basal levels (HvVRN1-1) was associated with rapid inflorescence initiation regardless of HvVRN2 or PPD-H1 genotype. HvFT1 was expressed without vernalization in lines with the HvVRN1-1 allele and HvFT1 transcript levels were highest in lines with the active PPD-H1 allele; this correlated with rapid apex development postinflorescence initiation. Thus, expression of HvVRN1 promotes inflorescence initiation and up-regulates HvFT1. Analysis of HvVRN1 expression in different genetic backgrounds postvernalization showed that HvVRN2, HvFT1, and PPD-H1 are unlikely to play a role in low-temperature induction of HvVRN1. In a vernalization responsive barley, HvFT1 is not induced by low temperatures alone, but can be induced by long days following prolonged low-temperature treatment. We conclude that low-temperature and daylength flowering-response pathways are integrated to control expression of HvFT1 in barley, and that this might occur through regulation of HvVRN2 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.