The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO . Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface-affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH and H production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate-limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.
Glassy carbon electrodes were functionalized with redox-active moieties by condensation of o-phenylenediamine derivatives with o-quinone sites native to graphitic carbon surfaces. Electrochemical and spectroscopic investigations establish that these graphite-conjugated catalysts (GCCs) exhibit strong electronic coupling to the electrode, leading to electron transfer (ET) behavior that diverges fundamentally from that of solution-phase or surface-tethered analogues. We find that (1) ET is not observed between the electrode and a redox-active GCC moiety regardless of applied potential. (2) ET is observed at GCCs only if the interfacial reaction is ion-coupled. (3) Even when ET is observed, the oxidation state of a transition metal GCC site remains unchanged. From these observations, we construct a mechanistic model for GCC sites in which ET behavior is identical to that of catalytically active metal surfaces rather than to that of molecules in solution. These results suggest that GCCs provide a versatile platform for bridging molecular and heterogeneous electrocatalysis.
CONSPECTUS:The efficient interconversion of electrical and chemical energy requires catalysts capable of accelerating multielectron reactions at or near electrified interfaces. These reactions can be performed at metallic surface sites on heterogeneous electrocatalysts or through redox mediation at molecular electrocatalysts. The relative ease of synthesis and characterization for homogeneous catalysts has allowed for molecular-level control over the active site and permitted systematic tuning of activity and selectivity. Similar control is difficult to achieve with heterogeneous electrocatalysts, because they typically exhibit a distribution of active site geometries and local electronic structures, which are challenging to modify with molecular precision. However, metallic heterogeneous electrocatalysts benefit from a continuum of electronic states that distribute the redox burden of multielectron transformations, enabling more efficient catalysis. We envisioned that we could combine the attractive properties of molecular and heterogeneous catalysts by integrating tunable molecular active sites into the delocalized band states of a conductive solid. The Surendranath group has developed a class of electrocatalysts in which molecules are strongly electronically coupled to graphitic electrodes through a conductive, aromatic pyrazine linkage such that they behave like metallic surface active sites. In this Account, we discuss the dual role of these graphite-conjugated catalysts (GCCs) as a platform with which to answer molecular-level questions of metallic active sites and as a tool with which to fundamentally alter the mechanism and enhance the performance of molecular active sites. We begin by describing the electrochemical and spectroscopic studies that demonstrated that GCC sites behave like metallic active sites rather than simply as redox mediators attached to electrode surfaces. We then discuss how electrochemical studies of a series of graphite-conjugated acids enabled the construction of a molecular model for the thermochemistry of proton-coupled electron transfer reactions at GCC sites based on the pK a of the molecular analogue of the conjugated site and the potential of zero free charge of the electrode. In the final section, we discuss the effects of graphite conjugation on the mechanism and rate of oxygen reduction, hydrogen evolution, and carbon dioxide reduction catalysis across four different GCC platforms involving N-heterocycle, organometallic, and metalloporphyrin active sites. We discuss how molecular-level tuning at graphite-conjugated active sites directly correlates to changes in catalytic activity for the oxygen reduction reaction. We demonstrate that graphite-conjugated porphyrins show enhanced catalytic oxygen reduction activity over amide-linked porphyrins. Lastly, we describe how catalysis at graphite-conjugated sites proceeds through mechanisms involving concerted electron transfer and substrate activation, in stark contrast to the mechanisms observed for molecular analogues. Overall, ...
Proton-coupled electron-transfer (PCET) steps play a key role in energy conversion reactions. Molecular PCET reactions are well-described by “square schemes” in which the overall thermochemistry of the reaction is broken into its constituent proton-transfer and electron-transfer components. Although this description has been essential for understanding molecular PCET, no such framework exists for PCET reactions that take place at electrode surfaces. Herein, we develop a molecular square scheme framework for interfacial PCET by investigating the electrochemistry of molecularly well-defined acid/base sites conjugated to graphitic electrodes. Using cyclic voltammetry, we first demonstrate that, irrespective of the redox properties of the corresponding molecular analogue, proton transfer to graphite-conjugated acid/base sites is coupled to electron transfer. We then show that the thermochemistry of surface PCET events can be described by the p K a of the molecular analogue and the potential of zero free charge (zero-field reduction potential) of the electrode. This work provides a general framework for analyzing and predicting the thermochemistry of interfacial PCET reactions.
Efficient interfacial electrocatalysis requires rapid concerted proton−electron transfer (CPET) at the electrode surface, a process for which there is little mechanistic understanding. In aqueous media, multiple proton donors coexist, adding to the mechanistic complexity. Herein, we examine the rate of the hydrogen evolution reaction (HER) on Au, a proxy for CPET to Au, as a function of the concentration of exogenous phosphate and borate proton donors. We find that the reaction order in phosphate is 0.6, whereas the reaction order in borate is close to 0, indicating that phosphate, unlike borate, can outcompete water as a proton donor for interfacial CPET. Promotion in phosphate is substantial; the rate of the HER on Au in saturated potassium phosphate at pH 6.8 is identical to the rate of the HER on Au at pH 1. Additionally, we demonstrate that buffer-promoted CPET is a phenomenon that extends beyond Au to an Earth-abundant catalyst, NiS x . Kinetic data indicate that interfacial CPET cannot be viewed as a simple bimolecular reaction between the donor and a surface site, but that it first requires the formation of a preassociation complex embedded in the double layer. Our results emphasize that both the proton donor and the donor's environment control the rate of interfacial CPET and consequently have profound effects on the rate of heterogeneous electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.