The maculae flavae of the human vocal folds include dense extracellular matrices and compacted cells with a stellate morphology. These vocal-fold stellate cells are thought to participate in the metabolism of extracellular matrices essential in maintaining vocal-fold viscoelasticity required for phonation. We have isolated and cultured these new cells and have tested the hypothesis that they maintain a distinct cellular and biochemical phenotype. We have compared proliferation rates, changes on immunophenotype, and intracellular lipid and vitamin A storage. Vocal-fold stellate cells undergo culture-induced transdifferentiation to a myofibroblast-like phenotype with an altered phenotype resembling, but not identical to, activated hepatic and pancreatic stellate cells. Our results reveal that these cells are capable of responding to exogenous all-trans retinol in culture. Exposure to this synthetic co-factor causes deactivation characterized by decreased proliferation, loss of the activated stellate cell marker, alpha-smooth muscle actin, and restoration of intracellular lipid and vitamin A metabolite storage. These data establish a new and distinct cellular target for future investigations of the viscoelastic properties of the vocal-fold mucosa during normal phonation, aging, vocal-fold scarring, laryngeal fibrosis, and myofibroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.