This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). However, this has not been accompanied by a comprehensive evaluation of the target plasma and lung concentrations of these drugs following approved dosing in humans. Accordingly, concentration 90% (EC90) values recalculated from in vitro anti‐SARS‐CoV‐2 activity data was expressed as a ratio to the achievable maximum plasma concentration (Cmax) at an approved dose in humans (Cmax/EC90 ratio). Only 14 of the 56 analyzed drugs achieved a Cmax/EC90 ratio above 1. A more in‐depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir‐boosted), and sulfadoxine achieved plasma concentrations above their reported anti‐SARS‐CoV‐2 activity across their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (KpUlung) was also simulated to derive a lung Cmax/half‐maximal effective concentration (EC50) as a better indicator of potential human efficacy. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir‐boosted), tipranavir (ritonavir‐boosted), ivermectin, azithromycin, and lopinavir (ritonavir‐boosted) were all predicted to achieve lung concentrations over 10‐fold higher than their reported EC50. Nitazoxanide and sulfadoxine also exceeded their reported EC50 by 7.8‐fold and 1.5‐fold in lung, respectively. This analysis may be used to select potential candidates for further clinical testing, while deprioritizing compounds unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments, such as the lungs, in order to maximize the potential for success of proposed human clinical trials.
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC 90. Methods: A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC 90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. Results: The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. Conclusion: The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial. The authors confirm that the PI for this paper is Andrew Owen and the study informs dosing optimisation using a mathematical model without any involvement of actual patients.
Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics, and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, are discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilized for future drug development and clinical management programs.
Objectives Tenofovir alafenamide produces lower plasma tenofovir and higher intracellular tenofovir diphosphate (DP) concentrations than tenofovir disoproxil fumarate but it is likely a victim of interactions with rifampicin. We aimed to investigate the pharmacokinetics of tenofovir alafenamide/emtricitabine with rifampicin. Patients and methods Healthy volunteers received tenofovir alafenamide/emtricitabine at 25/200 mg once daily, followed by tenofovir alafenamide/emtricitabine + rifampicin daily followed by tenofovir disoproxil fumarate. Plasma tenofovir alafenamide, tenofovir, emtricitabine and intracellular tenofovir-DP and emtricitabine triphosphate pharmacokinetics and genetic polymorphisms were assessed. Results Tenofovir alafenamide exposure decreased when tenofovir alafenamide/emtricitabine + rifampicin was used compared with tenofovir alafenamide/emtricitabine [geometric mean ratio (GMR) (90% CI): 0.45 (0.33–0.60)]. Plasma tenofovir and intracellular tenofovir-DP concentrations decreased with rifampicin [GMR (90% CI): 0.46 (0.40–0.52) and 0.64 (0.54–0.75), respectively]. GMR (90% CI) of intracellular tenofovir-DP AUC0–24 for tenofovir alafenamide/emtricitabine + rifampicin versus tenofovir disoproxil fumarate was 4.21 (2.98–5.95). Rifampicin did not affect emtricitabine pharmacokinetics. CYP3A4*22 rs35599367 was associated with higher plasma tenofovir alafenamide AUC0–24 at day 56. Conclusions Following tenofovir alafenamide/emtricitabine administration with rifampicin, intracellular tenofovir-DP concentrations were still 4.21-fold higher than those achieved by tenofovir disoproxil fumarate, supporting further study during HIV/TB co-infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.