SUMMARY Box jellyfish, cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Two of these eye types, called the upper and lower lens eyes, are camera-type eyes with spherical fish-like lenses. Compared with other cnidarians, cubomedusae also have an elaborate behavioral repertoire, which seems to be predominantly visually guided. Still, positive phototaxis is the only behavior described so far that is likely to be correlated with the eyes. We have explored the obstacle avoidance response of the Caribbean species Tripedalia cystophora and the Australian species Chiropsella bronzie in a flow chamber. Our results show that obstacle avoidance is visually guided. Avoidance behavior is triggered when the obstacle takes up a certain angle in the visual field. The results do not allow conclusions on whether color vision is involved but the strength of the response had a tendency to follow the intensity contrast between the obstacle and the surroundings (chamber walls). In the flow chamber Tripedalia cystophora displayed a stronger obstacle avoidance response than Chiropsella bronzie since they had less contact with the obstacles. This seems to follow differences in their habitats.
Cubomedusae have a total of 24 eyes of four morphologically different types. Two of these eye types are camera-type eyes (upper and lower lens-eye), while the other two eye types are simpler pigment pit eyes (pit and slit eye). Here, we give a description of the visual system of the box jellyfish species Chiropsella bronzie and the optics of the lens eyes in this species. One aim of this study is to distinguish between general cubozoan features and species-specific features in the layout and optics of the eyes. We find that both types of lens eyes are more severely under-focused in C. bronzie than those in the previously investigated species Tripedalia cystophora. In the lower lens-eye of C. bronzie, blur circles subtend 20 and 52 degrees for closed and open pupil, respectively, effectively removing all but the coarsest structures of the image. Histology reveals that the retina of the lower lens-eye, in addition to pigmented photoreceptors, also contains long pigment-cells, with both dark and white pigment, where the dark pigment migrates on light/dark adaptation. Unlike the upper lens-eye lens of T.cystophora, the same eye in C.bronzie did not display any significant optical power.
Box jellyfish (Cubomedusae) are visually orientating animals which posses a total of 24 eyes of 4 morphological types; 2 pigment cup eyes (pit eye and slit eye) and 2 lens eyes [upper lens-eye (ule) and lower lens-eye (lle)]. In this study, we use electroretinograms (ERGs) to explore temporal properties of the two lens eyes. We find that the ERG of both lens eyes are complex and using sinusoidal flicker stimuli we find that both lens eyes have slow temporal resolution. The average flicker fusion frequency (FFF) was found to be approximately 10 Hz for the ule and 8 Hz for the lle. Differences in the FFF and response patterns between the two lens eyes suggest that the ule and lle filter information differently in the temporal domain and thus are tuned to perform different visual tasks. The data collected in this study support the idea that the visual system of box jellyfish is a collection of special purpose eyes.
Box jellyfish (Cubomedusae) possess a unique visual system comprising 24 eyes of four morphological types. Moreover, box jellyfish display several visually guided behaviours, including obstacle avoidance and lightshaft attractance. It is largely unknown what kind of visual information box jellyfish use for carrying out these behaviours. Brightness contrast is almost certainly involved, but it is also possible that box jellyfish extract colour information from their surroundings. The possible presence of colour vision in box jellyfish has previously been investigated using behavioural, electrophysiological and immunohistochemical methods. However, the results from these studies are to some degree conflicting and inconclusive. Here, we present results from an investigation into the visual system of the box jellyfish Chiropsella bronzie, using microspectrophotometry and immunohistochemistry. Our results strongly indicate that only one type of visual pigment is present in the upper and lower lens eyes with a peak absorbance of approximately 510 nm. Additionally, the visual pigment appears to undergo bleaching, similar to that of vertebrate visual pigments.
Specific wavelengths of laser energy appear to induce different responses in renal fibrotic tissue. These findings support further study in the development of a customized laser therapy program of combined wavelengths to optimize MSC effects in the treatment of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.