Background Sport-related concussions (SRCs) are known to have short-term effects on cognitive processes, which can result in diverse clinical presentations. The long-term effects of SRC and repeated exposure to head impacts that do not result in SRC on specific cognitive health outcomes remain unclear. Objectives To synthesize and appraise the evidence base regarding cognitive health in living retired athletes with a history of head-impact exposure or SRC. Data Sources A systematic search of the EMBASE, PsycINFO, MEDLINE/PubMed, CINAHL, Cochrane Central Register of Controlled Trials, and Web of Science databases was conducted from inception to April 2018 using common key words and medical subject headings related to 3 components: (1) the participant (eg, retired athlete), (2) the primary outcome measure (eg, cognitive test used), and (3) the secondary outcome measure (eg, history of sport concussion). Study Selection Cross-sectional studies of living retired male or female athletes in which at least 1 cognitive test was used as an outcome measure were included. Two reviewers independently screened studies. Data Extraction Data extraction was performed using Strengthening the Reporting of Observational Studies in Epidemiology guidelines. Methodologic quality was assessed independently by 2 reviewers using the Downs and Black tool. Data Synthesis The search yielded 46 cross-sectional observational studies that were included in a qualitative synthesis. Most included studies (80%, n = 37) were published in the 5 years before our review. A large proportion of these studies (n = 20) included retired American National Football League players. The other research investigated professional, university, high school, and amateur retired athletes participating in sports such as American and Australian football, boxing, field and ice hockey, rugby, and soccer. The total sample consisted of 13 975 participants: 7387 collision-sport athletes, 662 contact-sport athletes, 3346 noncontact-sport athletes, and 2580 participants classified as controls. Compared with control participants or normative data, retired athletes displayed worse performance in 17 of 31 studies (55%) of memory, 6 of 11 studies (55%) of executive function, and 4 of 6 studies (67%) of psychomotor function and increased subjective concerns about cognitive function in 11 of 14 studies (79%). The authors of 13 of 46 investigations (28%) reported a frequency-response relationship, with poorer cognitive outcomes in athletes who had greater levels of exposure to head impacts or concussions. However, these results must be interpreted in light of the lack of methodologic rigor and moderate quality assessment of the included studies. Conclusions Evidence of poorer cognitive health among retired athletes with a history of concussion and head-impact exposure is evolving. Our results suggest that a history of SRC may more greatly affect the cognitive domains of memory, executive function, and psychomotor function. Retired athletes appeared to have increased self-reported cognitive difficulties, but the paucity of high-quality, prospective studies limited the conclusions that could be drawn regarding a cause-and-effect relationship between concussion and long-term health outcomes. Future researchers should consider a range of cognitive health outcomes, as well as premorbid ability, in diverse samples of athletes with or without a history of concussion or head-impact exposure to delineate the long-term effects of sport participation on cognitive functioning.
Portable inertial measurement units (IMUs) are beginning to be used in human motion analysis. These devices can be useful for the evaluation of spinal mobility in individuals with axial spondyloarthritis (axSpA). The objectives of this study were to assess (a) concurrent criterion validity in individuals with axSpA by comparing spinal mobility measured by an IMU sensor-based system vs. optical motion capture as the reference standard; (b) discriminant validity comparing mobility with healthy volunteers; (c) construct validity by comparing mobility results with relevant outcome measures. A total of 70 participants with axSpA and 20 healthy controls were included. Individuals with axSpA completed function and activity questionnaires, and their mobility was measured using conventional metrology for axSpA, an optical motion capture system, and an IMU sensor-based system. The UCOASMI, a metrology index based on measures obtained by motion capture, and the IUCOASMI, the same index using IMU measures, were also calculated. Descriptive and inferential analyses were conducted to show the relationships between outcome measures. There was excellent agreement (ICC > 0.90) between both systems and a significant correlation between the IUCOASMI and conventional metrology (r = 0.91), activity (r = 0.40), function (r = 0.62), quality of life (r = 0.55) and structural change (r = 0.76). This study demonstrates the validity of an IMU system to evaluate spinal mobility in axSpA. These systems are more feasible than optical motion capture systems, and they could be useful in clinical practice.
Background: Traumatic brain injury (TBI) is an established risk factor for dementia but mechanisms are uncertain. Accurate TBI exposure classification is critical for cognitive aging research studies seeking to discover mechanisms and treatments of post-TBI dementia. Brief TBI screens, commonly used in epidemiological studies of cognitive aging, are insensitive, leading to exposure mis-classification. Comprehensive TBI interviews, while more sensitive, may be impractical. Objective: We aimed to develop and validate a scalable, self-administered, comprehensive, web-based, TBI exposure survey for use in international cognitive aging research.
The objectives of this study were to evaluate the reliability of wearable inertial motion unit (IMU) sensors in measuring spinal range of motion under supervised and unsupervised conditions in both laboratory and ambulatory settings. A secondary aim of the study was to evaluate the reliability of composite IMU metrology scores (IMU-ASMI (Amb)). Forty people with axSpA participated in this clinical measurement study. Participant spinal mobility was assessed by conventional metrology (Bath Ankylosing Spondylitis Metrology Index, linear version—BASMILin) and by a wireless IMU sensor-based system which measured lumbar flexion-extension, lateral flexion and rotation. Each sensor-based movement test was converted to a normalized index and used to calculate IMU-ASMI (Amb) scores. Test-retest reliability was evaluated using intra-class correlation coefficients (ICC). There was good to excellent agreement for all spinal range of movements (ICC > 0.85) and IMU-ASMI (Amb) scores (ICC > 0.87) across all conditions. Correlations between IMU-ASMI (Amb) scores and conventional metrology were strong (Pearson correlation ≥ 0.85). An IMU sensor-based system is a reliable way of measuring spinal lumbar mobility in axSpA under supervised and unsupervised conditions. While not a replacement for established clinical measures, composite IMU-ASMI (Amb) scores may be reliably used as a proxy measure of spinal mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.